CNN基础
CNN一般结构

卷积层作用:
- 提取不同维度的特征,组合不同维度特征,其本质是卷积核,因此,学习一个有效的总卷积核是训练卷积层主要工作
2)寻找不同位置,不同大小的特征

- 根据卷积核参数计算上下层blob之前维度关系
input => conv => output:
out = (W-F+2*P)/S + 1
W:input的尺寸
F:kernel的尺寸
S:步长
P:padding的数量
非线性层
控制对不同特征特征信号所应当作出的反应
如,RELU:
\]
- 对低强度特征信息不做反应,超过阈值后,强度越大,反应相应越大
- 阈值一般为0,因此样本数据与特征也尽量零均值,这可能是训练数据归一化及batchnormalization的原因
池化层
- 降采样:将高维特征稀疏为低维特征
2)可以增强模型对特征畸变的鲁棒性,如手写数字笔记不工整
dropout:
打破网络的对称性,使网络结构不断重构,防止网络过拟合;
具体实现直接看源码dropout_layer.cpp和dropout_layer.hpp
前传过程中,bottom计算出的部分特征不参与前传过程的计算
void DropoutLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) {
const Dtype* bottom_data = bottom[0]->cpu_data();
Dtype* top_data = top[0]->mutable_cpu_data();
unsigned int* mask = rand_vec_.mutable_cpu_data(); //从cpu中取一段可读写的内存,返回指针mask
const int count = bottom[0]->count(); //mutable_cpu_data表示可读写的内存,而cpu_data表示只读内存
if (this->phase_ == TRAIN) {
// Create random numbers
caffe_rng_bernoulli(count, 1. - threshold_, mask); //将mask内容部分以伯努利概率置为0,置0的概率与threshold有关
for (int i = 0; i < count; ++i) {
top_data[i] = bottom_data[i] * mask[i] * scale_; //用mask掩码将bottom_data中部分特征设为死结点,不参与前传中loss的计算
}
} else {
caffe_copy(bottom[0]->count(), bottom_data, top_data);
}
}
在反传过程中,上层梯度回传时至下层时,同样会一部分被mask屏蔽,而且这个maskg前传一致,保证了前传与反传过程看到的网络结构是一致的
template <typename Dtype>
void DropoutLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top, const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) {
if (propagate_down[0]) {
const Dtype* top_diff = top[0]->cpu_diff();
Dtype* bottom_diff = bottom[0]->mutable_cpu_diff();
if (this->phase_ == TRAIN) {
const unsigned int* mask = rand_vec_.cpu_data(); //将前传时写入mask内容重新赋值mask指针
const int count = bottom[0]->count();
for (int i = 0; i < count; ++i) {
bottom_diff[i] = top_diff[i] * mask[i] * scale_; //同样,反传过程也屏蔽了部分梯度,这样在一次前传与反传过程中所看见的网络结构实际就相同了,
} //得到bottom梯度后会给cpu或gpu进行solver的update
} else {
caffe_copy(top[0]->count(), top_diff, bottom_diff);
}
}
}
其中,mask初始化用到了一个 caffe_rng_bernoulli,在这篇文章中提到,其实它主要调用了boost::bernoulli_distribution,将向量初始化为一定比例的1其余为0
参考
CNN基础的更多相关文章
- CNN基础框架简介
卷积神经网络简介 卷积神经网络是多层感知机的变种,由生物学家休博尔和维瑟尔在早期关于猫视觉皮层的研究发展而来.视觉皮层的细胞存在一个复杂的构造,这些细胞对视觉输入空间的子区域非常敏感,我们称之为感受野 ...
- 卷积神经网络(CNN)基础介绍
本文是对卷积神经网络的基础进行介绍,主要内容包含卷积神经网络概念.卷积神经网络结构.卷积神经网络求解.卷积神经网络LeNet-5结构分析.卷积神经网络注意事项. 一.卷积神经网络概念 上世纪60年代. ...
- CNN基础一:从头开始训练CNN进行图像分类(猫狗大战为例)
本文旨在总结一次从头开始训练CNN进行图像分类的完整过程(猫狗大战为例,使用Keras框架),免得经常遗忘.流程包括: 从Kaggle下载猫狗数据集: 利用python的os.shutil库,制作训练 ...
- CNN基础四:监测并控制训练过程的法宝——Keras回调函数和TensorBoard
训练模型时,很多事情一开始都无法预测.比如之前我们为了找出迭代多少轮才能得到最佳验证损失,可能会先迭代100次,迭代完成后画出运行结果,发现在中间就开始过拟合了,于是又重新开始训练. 类似的情况很多, ...
- CNN基础三:预训练模型的微调
上一节中,我们利用了预训练的VGG网络卷积基,来简单的提取了图像的特征,并用这些特征作为输入,训练了一个小分类器. 这种方法好处在于简单粗暴,特征提取部分的卷积基不需要训练.但缺点在于,一是别人的模型 ...
- CNN基础二:使用预训练网络提取图像特征
上一节中,我们采用了一个自定义的网络结构,从头开始训练猫狗大战分类器,最终在使用图像增强的方式下得到了82%的验证准确率.但是,想要将深度学习应用于小型图像数据集,通常不会贸然采用复杂网络并且从头开始 ...
- 深度学习笔记之CNN(卷积神经网络)基础
不多说,直接上干货! 卷积神经网络(ConvolutionalNeural Networks,简称CNN)提出于20世纪60年代,由Hubel和Wiesel在研究猫脑皮层中用于局部敏感和方向选择的神经 ...
- AndrewNG Deep learning课程笔记 - CNN
参考, An Intuitive Explanation of Convolutional Neural Networks http://www.hackcv.com/index.php/archiv ...
- Paper/ Overview | CNN(未完待续)
目录 I. 基础知识 II. 早期尝试 1. Neocognitron, 1980 2. LeCun, 1989 A. 概况 B. Feature maps & Weight sharing ...
随机推荐
- SQL通用优化方案(where优化、索引优化、分页优化、事务优化、临时表优化)
SQL通用优化方案:1. 使用参数化查询:防止SQL注入,预编译SQL命令提高效率2. 去掉不必要的查询和搜索字段:其实在项目的实际应用中,很多查询条件是可有可无的,能从源头上避免的多余功能尽量砍掉, ...
- Linux之Libcurl库的介绍与应用20170509
一.LibCurl简介 LibCurl是免费的客户端URL传输库,支持FTP,FTPS, HTTP, HTTPS, SCP, SFTP, TFTP, TELNET, DICT, FILE ,LDAP等 ...
- CSU 多校训练第二场 J Pinemi Puzzles
传送门:http://acm.csu.edu.cn:20080/csuoj/problemset/problem?pid=2279 题意: 代码: #include <set> #incl ...
- 改变 jq中 data-id 的值
if (_this.hasClass('default_btn_is')){ _this.removeClass('default_btn_is'); _this.addClass('default_ ...
- ORACLE创建用户,建表空间,授予权限
1.创建用户表空间 CREATE TABLESPACE my_tsLOGGINGDATAFILE 'D:\app\win7\oradata\orcl\my_ts.dbf' SIZE 10M AUTOE ...
- Web Api返回值
首先:注明,我还没这么强的功力啦!这是我看的网上的,因为怕博主删除就自己复制了一下 博主的网址是:http://www.cnblogs.com/landeanfen/p/5501487.html 使用 ...
- CS46 C 枚举二分
给你n*2个数其中n个数是原数减去了X值的数.问你满足条件的X值和原来的n个数.注意X为正整数. X should be positive,没0的 思路很简单,一个数必定会对应一个数,那么枚举一个数和 ...
- Spark RDD中的aggregate函数
转载自:http://blog.csdn.net/qingyang0320/article/details/51603243 针对Spark的RDD,API中有一个aggregate函数,本人理解起来 ...
- ORA-01552 非系统表空间不能使用系统回滚段处理
今天新搭建了一个10g的测试数据库,运行都很正常,但是在打开autotrace功能后执行语句,报错 SQL> set autotrace on SQL> select username,s ...
- Automation Testing - Best Practice(书写规范)
Coding Standards Coding Standards are suggestions that will help us to write automation Scripts code ...