线性插值

先讲一下线性插值:已知数据 (x0, y0) 与 (x1, y1),要计算 [x0, x1] 区间内某一位置 x 在直线上的y值(反过来也是一样,略):

y−y0x−x0=y1−y0x1−x0
y=x1−xx1−x0y0+x−x0x1−x0y1

上面比较好理解吧,仔细看就是用x和x0,x1的距离作为一个权重,用于y0和y1的加权。双线性插值本质上就是在两个方向上做线性插值。

双线性插值

在数学上,双线性插值是有两个变量的插值函数的线性插值扩展,其核心思想是在两个方向分别进行一次线性插值[1]。见下图:

假如我们想得到未知函数 f 在点 P = (x, y) 的值,假设我们已知函数 f 在 Q11 = (x1, y1)、Q12 = (x1, y2), Q21 = (x2, y1) 以及 Q22 = (x2, y2) 四个点的值。最常见的情况,f就是一个像素点的像素值。首先在 x 方向进行线性插值,得到



然后在 y 方向进行线性插值,得到

综合起来就是双线性插值最后的结果:



由于图像双线性插值只会用相邻的4个点,因此上述公式的分母都是1。opencv中的源码如下,用了一些优化手段,比如用整数计算代替float(下面代码中的*2048就是变11位小数为整数,最后有两个连乘,因此>>22位),以及源图像和目标图像几何中心的对齐

SrcX=(dstX+0.5)* (srcWidth/dstWidth) -0.5

SrcY=(dstY+0.5) * (srcHeight/dstHeight)-0.5

这个要重点说一下,源图像和目标图像的原点(0,0)均选择左上角,然后根据插值公式计算目标图像每点像素,假设你需要将一幅5x5的图像缩小成3x3,那么源图像和目标图像各个像素之间的对应关系如下。如果没有这个中心对齐,根据基本公式去算,就会得到左边这样的结果;而用了对齐,就会得到右边的结果:

cv::Mat matSrc, matDst1, matDst2;  

matSrc = cv::imread("lena.jpg", 2 | 4);
matDst1 = cv::Mat(cv::Size(800, 1000), matSrc.type(), cv::Scalar::all(0));
matDst2 = cv::Mat(matDst1.size(), matSrc.type(), cv::Scalar::all(0)); double scale_x = (double)matSrc.cols / matDst1.cols;
double scale_y = (double)matSrc.rows / matDst1.rows; uchar* dataDst = matDst1.data;
int stepDst = matDst1.step;
uchar* dataSrc = matSrc.data;
int stepSrc = matSrc.step;
int iWidthSrc = matSrc.cols;
int iHiehgtSrc = matSrc.rows; for (int j = 0; j < matDst1.rows; ++j)
{
float fy = (float)((j + 0.5) * scale_y - 0.5);
int sy = cvFloor(fy);
fy -= sy;
sy = std::min(sy, iHiehgtSrc - 2);
sy = std::max(0, sy); short cbufy[2];
cbufy[0] = cv::saturate_cast<short>((1.f - fy) * 2048);
cbufy[1] = 2048 - cbufy[0]; for (int i = 0; i < matDst1.cols; ++i)
{
float fx = (float)((i + 0.5) * scale_x - 0.5);
int sx = cvFloor(fx);
fx -= sx; if (sx < 0) {
fx = 0, sx = 0;
}
if (sx >= iWidthSrc - 1) {
fx = 0, sx = iWidthSrc - 2;
} short cbufx[2];
cbufx[0] = cv::saturate_cast<short>((1.f - fx) * 2048);
cbufx[1] = 2048 - cbufx[0]; for (int k = 0; k < matSrc.channels(); ++k)
{
*(dataDst+ j*stepDst + 3*i + k) = (*(dataSrc + sy*stepSrc + 3*sx + k) * cbufx[0] * cbufy[0] +
*(dataSrc + (sy+1)*stepSrc + 3*sx + k) * cbufx[0] * cbufy[1] +
*(dataSrc + sy*stepSrc + 3*(sx+1) + k) * cbufx[1] * cbufy[0] +
*(dataSrc + (sy+1)*stepSrc + 3*(sx+1) + k) * cbufx[1] * cbufy[1]) >> 22;
}
}
}
cv::imwrite("linear_1.jpg", matDst1); cv::resize(matSrc, matDst2, matDst1.size(), 0, 0, 1);
cv::imwrite("linear_2.jpg", matDst2);

好了,本篇到这里,欢迎大家分享转载,注明出处即可。

参考资料

[1] 双线性插值(Bilinear Interpolation)

[2] OpenCV ——双线性插值(Bilinear interpolation)

[3] 双线性插值算法及需要注意事项

[4] OpenCV中resize函数五种插值算法的实现过程

三十分钟理解:线性插值,双线性插值Bilinear Interpolation算法的更多相关文章

  1. [转载]三十分钟理解:线性插值,双线性插值Bilinear Interpolation算法

    [转载]三十分钟理解:线性插值,双线性插值Bilinear Interpolation算法 来源:https://blog.csdn.net/xbinworld/article/details/656 ...

  2. 三十分钟理解:双调排序Bitonic Sort,适合并行计算的排序算法

    欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld 技术交流QQ群:433250724,欢迎对算法.技术.应用感兴趣的同学加入 双调排序是data-indepen ...

  3. [重磅]Deep Forest,非神经网络的深度模型,周志华老师最新之作,三十分钟理解!

    欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术感兴趣的同学加入. 深度学习最大的贡献,个人认为就是表征 ...

  4. 三十分钟理解计算图上的微积分:Backpropagation,反向微分

    神经网络的训练算法,目前基本上是以Backpropagation (BP) 反向传播为主(加上一些变化),NN的训练是在1986年被提出,但实际上,BP 已经在不同领域中被重复发明了数十次了(参见 G ...

  5. 三十分钟理解博弈论“纳什均衡” -- Nash Equilibrium

    欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术感兴趣的同学加入. 纳什均衡(或者纳什平衡),Nash ...

  6. 数字图像处理实验(4):PROJECT 02-04 [Multiple Uses],Zooming and Shrinking Images by Bilinear Interpolation 标签: 图像处理MATLAB

    实验要求: Zooming and Shrinking Images by Bilinear Interpolation Objective To manipulate another techniq ...

  7. 【转】三十分钟学会STL算法

    转载自: http://net.pku.edu.cn/~yhf/UsingSTL.htm 这是本小人书.原名是<using stl>,不知道是谁写的.不过我倒觉得很有趣,所以化了两个晚上把 ...

  8. 线性插值&双线性插值&三线性插值

    http://www.cnblogs.com/yingying0907/archive/2012/11/21/2780092.html 內插是数学领域数值分析中的通过已知的离散数据求未知数据的过程或方 ...

  9. 【转】三十分钟掌握STL

    转自http://net.pku.edu.cn/~yhf/UsingSTL.htm 三十分钟掌握STL 这是本小人书.原名是<using stl>,不知道是谁写的.不过我倒觉得很有趣,所以 ...

随机推荐

  1. LCA的倍增算法

    LCA,即树上两点之间的公共祖先,求这样一个公共祖先有很多种方法: 暴力向上:O(n) 每次将深度大的点往上移动,直至二者相遇 树剖:O(logn) 在O(2n)预处理重链之后,每次就将深度大的沿重链 ...

  2. Zabbix概术及基础介绍(一)

    一.Zabbix介绍 Zabbix 是由Alexei Vladishev创建,目前由Zabbix SIA在持续开发和支持.Zabbix 是一个企业级的分布式开源监控方案.Zabbix是一款能够监控各种 ...

  3. 安装svn测试环境

    centos 6.5 web service模式 安装svn测试服务器 1 下载subversion shell>yum install subversion 2 查看安装的版本 [root@c ...

  4. 小Q与内存

    Portal --> broken qwq Description (这个描述好像怎么都精简不起来啊qwq) 大概是说你的计算机有1GB的物理内存,按照Byte寻址,其物理地址空间为\(0\si ...

  5. ss命令用法小记

    By francis_hao    Nov 4,2017   ss是一个查看socket的实用工具 概要 ss [options] [ FILTER ]   描述 ss可以查看socket的统计信息, ...

  6. 我的emacs简易配置

    ;;------------语言环境字符集设置(utf-8)------------- (set-language-environment 'Chinese-GB) (set-keyboard-cod ...

  7. Python-- Redis Set

    一.无序集合 Set操作,Set集合就是不允许重复的列表 1.1 sadd(name, values) # name对应的集合中添加元素 1.2 smembers(name) # 获取name对应的集 ...

  8. php优秀网摘

    1.thinkphp的目录结构设计经验总结 说明:thinkphp3.2.3对类没有深刻的认识,对项目规模和架构有很糟糕的影响.这里写的目录结构和设计模式相当于对3.2添加了面向对象架构.第二个链接是 ...

  9. Hibernate学习(5)- session的get与load方法对比

    1.共同点:get和load都是根据Id单条查询获取对象 org.hibernate.Session.load(Class<User> theClass, Serializable id) ...

  10. 前端PHP入门-025-数组-重中之重

    数组是PHP中一个 很很很很很很很很很很重要 的一个 数据类型 . 学习数组,大家主要学习两部份的知识: 1.数组的定义,定义中的一些注意的坑 2.数组的函数使用 认识数组 数组定义 数组在之前我们让 ...