三十分钟理解:线性插值,双线性插值Bilinear Interpolation算法
线性插值
先讲一下线性插值:已知数据 (x0, y0) 与 (x1, y1),要计算 [x0, x1] 区间内某一位置 x 在直线上的y值(反过来也是一样,略):
上面比较好理解吧,仔细看就是用x和x0,x1的距离作为一个权重,用于y0和y1的加权。双线性插值本质上就是在两个方向上做线性插值。
双线性插值
在数学上,双线性插值是有两个变量的插值函数的线性插值扩展,其核心思想是在两个方向分别进行一次线性插值[1]。见下图:
假如我们想得到未知函数 f 在点 P = (x, y) 的值,假设我们已知函数 f 在 Q11 = (x1, y1)、Q12 = (x1, y2), Q21 = (x2, y1) 以及 Q22 = (x2, y2) 四个点的值。最常见的情况,f就是一个像素点的像素值。首先在 x 方向进行线性插值,得到
然后在 y 方向进行线性插值,得到
综合起来就是双线性插值最后的结果:
由于图像双线性插值只会用相邻的4个点,因此上述公式的分母都是1。opencv中的源码如下,用了一些优化手段,比如用整数计算代替float(下面代码中的*2048就是变11位小数为整数,最后有两个连乘,因此>>22位),以及源图像和目标图像几何中心的对齐
SrcX=(dstX+0.5)* (srcWidth/dstWidth) -0.5
SrcY=(dstY+0.5) * (srcHeight/dstHeight)-0.5,
这个要重点说一下,源图像和目标图像的原点(0,0)均选择左上角,然后根据插值公式计算目标图像每点像素,假设你需要将一幅5x5的图像缩小成3x3,那么源图像和目标图像各个像素之间的对应关系如下。如果没有这个中心对齐,根据基本公式去算,就会得到左边这样的结果;而用了对齐,就会得到右边的结果:
cv::Mat matSrc, matDst1, matDst2;
matSrc = cv::imread("lena.jpg", 2 | 4);
matDst1 = cv::Mat(cv::Size(800, 1000), matSrc.type(), cv::Scalar::all(0));
matDst2 = cv::Mat(matDst1.size(), matSrc.type(), cv::Scalar::all(0));
double scale_x = (double)matSrc.cols / matDst1.cols;
double scale_y = (double)matSrc.rows / matDst1.rows;
uchar* dataDst = matDst1.data;
int stepDst = matDst1.step;
uchar* dataSrc = matSrc.data;
int stepSrc = matSrc.step;
int iWidthSrc = matSrc.cols;
int iHiehgtSrc = matSrc.rows;
for (int j = 0; j < matDst1.rows; ++j)
{
float fy = (float)((j + 0.5) * scale_y - 0.5);
int sy = cvFloor(fy);
fy -= sy;
sy = std::min(sy, iHiehgtSrc - 2);
sy = std::max(0, sy);
short cbufy[2];
cbufy[0] = cv::saturate_cast<short>((1.f - fy) * 2048);
cbufy[1] = 2048 - cbufy[0];
for (int i = 0; i < matDst1.cols; ++i)
{
float fx = (float)((i + 0.5) * scale_x - 0.5);
int sx = cvFloor(fx);
fx -= sx;
if (sx < 0) {
fx = 0, sx = 0;
}
if (sx >= iWidthSrc - 1) {
fx = 0, sx = iWidthSrc - 2;
}
short cbufx[2];
cbufx[0] = cv::saturate_cast<short>((1.f - fx) * 2048);
cbufx[1] = 2048 - cbufx[0];
for (int k = 0; k < matSrc.channels(); ++k)
{
*(dataDst+ j*stepDst + 3*i + k) = (*(dataSrc + sy*stepSrc + 3*sx + k) * cbufx[0] * cbufy[0] +
*(dataSrc + (sy+1)*stepSrc + 3*sx + k) * cbufx[0] * cbufy[1] +
*(dataSrc + sy*stepSrc + 3*(sx+1) + k) * cbufx[1] * cbufy[0] +
*(dataSrc + (sy+1)*stepSrc + 3*(sx+1) + k) * cbufx[1] * cbufy[1]) >> 22;
}
}
}
cv::imwrite("linear_1.jpg", matDst1);
cv::resize(matSrc, matDst2, matDst1.size(), 0, 0, 1);
cv::imwrite("linear_2.jpg", matDst2);
好了,本篇到这里,欢迎大家分享转载,注明出处即可。
参考资料
[1] 双线性插值(Bilinear Interpolation)
[2] OpenCV ——双线性插值(Bilinear interpolation)
[3] 双线性插值算法及需要注意事项
[4] OpenCV中resize函数五种插值算法的实现过程
三十分钟理解:线性插值,双线性插值Bilinear Interpolation算法的更多相关文章
- [转载]三十分钟理解:线性插值,双线性插值Bilinear Interpolation算法
[转载]三十分钟理解:线性插值,双线性插值Bilinear Interpolation算法 来源:https://blog.csdn.net/xbinworld/article/details/656 ...
- 三十分钟理解:双调排序Bitonic Sort,适合并行计算的排序算法
欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld 技术交流QQ群:433250724,欢迎对算法.技术.应用感兴趣的同学加入 双调排序是data-indepen ...
- [重磅]Deep Forest,非神经网络的深度模型,周志华老师最新之作,三十分钟理解!
欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术感兴趣的同学加入. 深度学习最大的贡献,个人认为就是表征 ...
- 三十分钟理解计算图上的微积分:Backpropagation,反向微分
神经网络的训练算法,目前基本上是以Backpropagation (BP) 反向传播为主(加上一些变化),NN的训练是在1986年被提出,但实际上,BP 已经在不同领域中被重复发明了数十次了(参见 G ...
- 三十分钟理解博弈论“纳什均衡” -- Nash Equilibrium
欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术感兴趣的同学加入. 纳什均衡(或者纳什平衡),Nash ...
- 数字图像处理实验(4):PROJECT 02-04 [Multiple Uses],Zooming and Shrinking Images by Bilinear Interpolation 标签: 图像处理MATLAB
实验要求: Zooming and Shrinking Images by Bilinear Interpolation Objective To manipulate another techniq ...
- 【转】三十分钟学会STL算法
转载自: http://net.pku.edu.cn/~yhf/UsingSTL.htm 这是本小人书.原名是<using stl>,不知道是谁写的.不过我倒觉得很有趣,所以化了两个晚上把 ...
- 线性插值&双线性插值&三线性插值
http://www.cnblogs.com/yingying0907/archive/2012/11/21/2780092.html 內插是数学领域数值分析中的通过已知的离散数据求未知数据的过程或方 ...
- 【转】三十分钟掌握STL
转自http://net.pku.edu.cn/~yhf/UsingSTL.htm 三十分钟掌握STL 这是本小人书.原名是<using stl>,不知道是谁写的.不过我倒觉得很有趣,所以 ...
随机推荐
- ZJOI 2017 day2 4.27
明天就要比赛啦,今天早点休息. 既然是随便扯,首先就是yyzx的wifi(宁波的这种wifi系统我第一次见,要打开任意一个浏览器,才能跳出界面,网还是挺快的) 上午是学车的翁伊嘉&猪猪侠讲课, ...
- <深入理解计算机系统>第七章读书笔记
第七章读书笔记 链接 链接:将各种代码和数据部分收集起来并组合成为一个单一文件的过程.(这个文件可被加载或拷贝到存储器并执行) 链接可以执行于编译,加载或运行时. 静态链接: 两个主要任务: 1 符号 ...
- 【bzoj4212】神牛的养成计划
Portal --> bzoj4212 Description 给你\(n\)个字符串,接下来有\(m\)个询问,每个询问由两个给定的字符串\(s_1\)和\(s_2\)组成,对于每个询问输 ...
- python基础----多态与多态性、super函数用法、继承原理
一.多态与多态性 ㈠多态: 多态指的是一类事物有多种形态, ...
- 【翻译】InterlockedIncrement内部是如何实现的?
Interlocked系列函数可以对内存进行原子操作,它是如何实现的? 它的实现依赖于底层的CPU架构.对于某些CPU来说,这很简单,例如x86可以通过LOCK前缀直接支持Interl ...
- go日期时间函数+常用内建函数+错误处理
日期时间函数 // 时间日期函数包 import "time" // 1. 当前时间 time.Now()-->time.Time类型 // 2. now:=time.Now ...
- 【计算机视觉】SIFT中LoG和DoG比较
<SIFT原理与源码分析>系列文章索引:http://www.cnblogs.com/tianyalu/p/5467813.html 在实际计算时,三种方法计算的金字塔组数noctaves ...
- php开启压缩gzip
php服务的开启压缩,节省带宽 看是否开启压缩的网站 http://www.cnblogs.com/GaZeon/p/5421906.html 找到php.ini,修改下面的 ,重启php-fpm z ...
- C语言 两个小知识点
strlen 函数原型 extern unsigned int strlen(char *s); 在Visual C++ 6.0中,原型为size_t strlen(const char *strin ...
- 前端PHP入门-021-重点日期函数之日期验证函数
checkdate可以判断一个输出的日期是否有效. 在实际的工作中,我们需要经常用于检测常用于用户提交表单的数据验证. 函数的语法格式如下: bool checkdate ( int month,in ...