UVALive - 4108 SKYLINE (吉司机线段树)
题意:在一条直线上依次建造n座建筑物,每座建筑物建造完成后询问它在多长的部分是最高的。
比较好想的方法是用线段树分别维护每个区间的最小值mi和最大值mx,当建造一座高度为x的建筑物时,若mi>x则答案无贡献,直接退出,若mx<=x则区间赋值为x,答案加上区间长度。其他情况需要继续递归搜索。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=1e5+,inf=0x3f3f3f3f;
int n,mx[N<<],mi[N<<],lz[N<<];
ll ans;
#define ls (u<<1)
#define rs (u<<1|1)
#define mid ((l+r)>>1)
void pu(int u) {mx[u]=max(mx[ls],mx[rs]),mi[u]=min(mi[ls],mi[rs]);}
void change(int u,int x) {mx[u]=mi[u]=lz[u]=x;}
void pd(int u) {if(~lz[u])change(ls,lz[u]),change(rs,lz[u]),lz[u]=-;}
void build(int u=,int l=,int r=) {
lz[u]=-;
if(l==r) {mx[u]=mi[u]=; return;}
build(ls,l,mid),build(rs,mid+,r),pu(u);
}
void upd(int L,int R,int x,int u=,int l=,int r=) {
if(l>R||r<L||x<mi[u])return;
if(l>=L&&r<=R&&x>=mx[u]) {ans+=r-l+,change(u,x); return;}
pd(u),upd(L,R,x,ls,l,mid),upd(L,R,x,rs,mid+,r),pu(u);
}
int main() {
int T;
for(scanf("%d",&T); T--;) {
build(),ans=;
scanf("%d",&n);
while(n--) {
int l,r,x;
scanf("%d%d%d",&l,&r,&x),r--;
upd(l,r,x);
}
printf("%lld\n",ans);
scanf("");
}
return ;
}
这种方法对于随机数据是比较快的,但会被一些极端的数据卡成n^2,比如先来个[1,2,100000],[3,4,100000],...(每两个位置建一座很高的建筑物),然后来一堆[1,100000,1],[1,100000,2],...,遇到这种情况就GG了。
解决方法是改成吉司机线段树(Segment tree beats),稳定nlogn~
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=1e5+,inf=0x3f3f3f3f;
int n,mi[N<<],se[N<<],nmi[N<<],lz[N<<];
ll ans;
#define ls (u<<1)
#define rs (u<<1|1)
#define mid ((l+r)>>1)
void pu(int u) {
mi[u]=min(mi[ls],mi[rs]),se[u]=max(mi[ls],mi[rs]);
se[u]=se[u]==mi[u]?min(se[ls],se[rs]):min(se[u],min(se[ls],se[rs]));
nmi[u]=(mi[ls]==mi[u]?nmi[ls]:)+(mi[rs]==mi[u]?nmi[rs]:);
}
void change(int u,int x) {mi[u]=lz[u]=x;}
void pd(int u) {
if(~lz[u]) {
if(mi[ls]<lz[u])change(ls,lz[u]);
if(mi[rs]<lz[u])change(rs,lz[u]);
lz[u]=-;
}
}
void build(int u=,int l=,int r=) {
lz[u]=-;
if(l==r) {mi[u]=,se[u]=inf,nmi[u]=; return;}
build(ls,l,mid),build(rs,mid+,r),pu(u);
}
void upd(int L,int R,int x,int u=,int l=,int r=) {
if(l>R||r<L||mi[u]>x)return;
if(l>=L&&r<=R&&se[u]>x) {change(u,x),ans+=nmi[u]; return;}
pd(u),upd(L,R,x,ls,l,mid),upd(L,R,x,rs,mid+,r),pu(u);
}
int main() {
int T;
for(scanf("%d",&T); T--;) {
build(),ans=;
scanf("%d",&n);
while(n--) {
int l,r,x;
scanf("%d%d%d",&l,&r,&x),r--;
upd(l,r,x);
}
scanf("");
printf("%lld\n",ans);
}
return ;
}
UVALive - 4108 SKYLINE (吉司机线段树)的更多相关文章
- HDU - 5306 Gorgeous Sequence (吉司机线段树)
题目链接 吉司机线段树裸题... #include<bits/stdc++.h> using namespace std; typedef long long ll; ,inf=0x3f3 ...
- BZOJ4355: Play with sequence(吉司机线段树)
题意 题目链接 Sol 传说中的吉司机线段树??感觉和BZOJ冒险那题差不多,就是强行剪枝... 这题最坑的地方在于对于操作1,$C >= 0$, 操作2中需要对0取max,$a[i] > ...
- bzoj4355 Play with sequence(吉司机线段树)题解
题意: 已知\(n\)个数字,进行以下操作: \(1.\)区间\([L,R]\) 赋值为\(x\) \(2.\)区间\([L,R]\) 赋值为\(max(a[i] + x, 0)\) \(3.\)区间 ...
- bzoj5312 冒险(吉司机线段树)题解
题意: 已知\(n\)个数字,进行以下操作: \(1.\)区间\([L,R]\) 按位与\(x\) \(2.\)区间\([L,R]\) 按位或\(x\) \(3.\)区间\([L,R]\) 询问最大值 ...
- bzoj4695 最假女选手(势能线段树/吉司机线段树)题解
题意: 已知\(n\)个数字,进行以下操作: \(1.\)给一个区间\([L,R]\) 加上一个数\(x\) \(2.\)把一个区间\([L,R]\) 里小于\(x\) 的数变成\(x\) \(3.\ ...
- HDU - 6315 吉司机线段树
题意:给出a,b数组,区间上两种操作,给\(a[L,R]\)+1s,或者求\(\sum_{i=l}^{r}a_i/b_i\) 一看就知道是吉司机乱搞型线段树(低配版),暴力剪枝就好 维护区间a的最大值 ...
- HDU 5306 吉司机线段树
思路: 后面nlogn的部分是伪证... 大家可以构造数据证明是这是nlog^2n的啊~ 吉老司机翻车了 //By SiriusRen #include <cstdio> #include ...
- hdu6521 吉司机线段树
http://acm.hdu.edu.cn/showproblem.php?pid=6521 待填 代码 #include<bits/stdc++.h> #define ls o<& ...
- Petrozavodsk Winter-2018. AtCoder Contest. Problem I. ADD, DIV, MAX 吉司机线段树
题意:给你一个序列,需要支持以下操作:1:区间内的所有数加上某个值.2:区间内的所有数除以某个数(向下取整).3:询问某个区间内的最大值. 思路(从未见过的套路):维护区间最大值和区间最小值,执行2操 ...
随机推荐
- select * from table_name where 1=1的
我们先来看看这个语句的结果:select * from table where 1=1,其中where 1=1,由于1=1永远是成立的,返回TRUE,条件为真:所以,这条语句,就相当于select * ...
- 配置servlet支持文件上传
Servlet3.0为Servlet添加了multipart配置选项,并为HttpServletRequest添加了getPart和getParts方法获取上传文件.为了使Servlet支付文件上传需 ...
- SQL SERVER连接池
Connection Pool 是什么呢 ?每当程序需要读写数据库的时候.Connection.Open()会使用ConnectionString连接到数据库,数据库会为程序建立 一个连接,并且保持打 ...
- 五、Google Code Prettify:实现代码高亮的JS库
介绍 code prettify 解释为 “代码修饰”. 他由JS代码和CSS代码构成,用来高亮显示HTML页面中的代码. 支持:C, Java, Python, Bash, HTML, XML, J ...
- HIVE学习(待更新)
1 安装hive 下载 http://mirrors.shu.edu.cn/apache/hive/hive-1.2.2/,红框中的不需要编译. 由于hive是默认将元数据保存在本地内嵌的 Derby ...
- HDU-2196-树形dp/计算树上固定起点的最长路
Computer Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Su ...
- Ansible 小手册系列 二十(经常遇到的问题)
(1). 怎么为任务设置环境变量? - name: set environment shell: echo $PATH $SOME >> /tmp/a.txt environment: P ...
- 浅谈HTML中的块级元素和内联元素
一.基本概念 1.块级元素(block element):一般都从新行开始占据一定的矩形空间,可以设置其宽.高属性来改变矩形的大小.一般情况下块级元素可以包含内联元素和其它块级元素,但也有特殊如for ...
- [Web UI]对比Angular/jQueryUI/Extjs:没有一个框架是万能的
Angular不能做什么?对比Angular/jQueryUI/Extjs 框架就好比兵器,你得明白你手里拿的是屠龙刀还是倚天剑,刀法主要是砍,剑法主要是刺.对于那些职业喷子和脑残粉,小僧送你们两个字 ...
- hdu1151
题解: 二分图边覆盖 n-最大匹配 代码: #include<cstdio> #include<cmath> #include<algorithm> #includ ...