题目链接

Problem Description

很多学校流行一种比较的习惯。老师们很喜欢询问,从某某到某某当中,分数最高的是多少。

这让很多学生很反感。

不管你喜不喜欢,现在需要你做的是,就是按照老师的要求,写一个程序,模拟老师的询问。当然,老师有时候需要更新某位同学的成绩。

Input

本题目包含多组测试,请处理到文件结束。

在每个测试的第一行,有两个正整数 N 和 M ( 0<N<=200000,0<M<5000 ),分别代表学生的数目和操作的数目。

学生ID编号分别从1编到N。

第二行包含N个整数,代表这N个学生的初始成绩,其中第i个数代表ID为i的学生的成绩。

接下来有M行。每一行有一个字符 C (只取'Q'或'U') ,和两个正整数A,B。

当C为'Q'的时候,表示这是一条询问操作,它询问ID从A到B(包括A,B)的学生当中,成绩最高的是多少。

当C为'U'的时候,表示这是一条更新操作,要求把ID为A的学生的成绩更改为B。

Output

对于每一次询问操作,在一行里面输出最高成绩。

Sample Input

5 6
1 2 3 4 5
Q 1 5
U 3 6
Q 3 4
Q 4 5
U 2 9
Q 1 5

Sample Output

5
6
5
9 HintHuge input,the C function scanf() will work better than cin

分析

第一次做线段树的问题,这是一个最简单的线段树。既然是一棵树,那么他的每一个节点都要保存信息,至于保存什么信息就要依据题意来自己设定,这里要求的是每个区间的最大值,所以每个节点就用来保存最大值,但是这个最大值是哪个区间的呢,这就用到节点的位置了,我们给每个节点编号(1~n),此时就可以用编号来找到每个节点的左右孩子,节点编号为x,那么他的左孩子的编号就是2*x, 右孩子的编号是2 * x+1,下面要做的就是区间的划分了(做多能划分4 * n个区间),将一段大得区间不断的划分,直到这个区间只包含一个元素时,就不用再划分了(废话~~~),因为只包含一个元素的区间,他的最大值很显然就是这个元素了,具体看下面的图:

接下来就是要更新某一个值了,更新值的时候要找到这个要更新的数字,然后把它的值更新了,理所当然,包含这个值得区间的最大值也应该更新,因为更新后的值可能比原来的大。(这里有一个问题:如果将原来最大区间的最大值更新为一个较小的值后,由于这个线段树已经建立完毕,并且线段树的每一个节点保存的是还是原来最大值,所以这个现在这个较小的值不会被更替,这样答案就不对了,但是呢这道题没有将一个元素的值更新之后变得比原来的小的数据)

代码:

    #include<bits/stdc++.h>
using namespace std;
int num[200001];
struct node
{
int value;//此节点的值
int left,right;//此节点的所代表的的区间的左右端点
} tree[200001*4];
void build(int root,int left,int right)
{
tree[root].left=left;
tree[root].right=right;
if (left==right)//区间的左右端点相同
{
tree[root].value=num[left];
return ;
}
int mid=(left+right)/2;
build(root*2,left,mid);//继续构建左子树
build(root*2+1,mid+1,right);//继续构建右子树
tree[root].value=max(tree[root*2].value,tree[root*2+1].value);//根节点的值去两孩子节点的最大值 }
int find1(int root,int left,int right)
{
// cout<<2*root+1<<endl;
if (tree[root].left==left&&tree[root].right==right)
{
return tree[root].value;
}
if (right<=tree[2*root].right)//这个区间在根的左边
{
//cout<<2*root<<endl;
return find1(root*2,left,right);
}
else if (left>=tree[root*2+1].left)//这个区间在根的右边
{
return find1(root*2+1,left,right);
}
else//这个区间既在根的左边又在根的右边
{
int mid=(tree[root].left+tree[root].right)/2;
return max(find1(root*2,left,mid),find1(root*2+1,mid+1,right));
} }
void update(int stu,int val,int root)
{
tree[root].value=max(tree[root].value,val);
if (tree[root].left==stu&&tree[root].right==stu)
return;
if (stu<=tree[root*2].right)
update(stu,val,root*2);
if(stu>=tree[root*2+1].left)
update(stu,val,root*2+1);
}
int main()
{
int n,m;
while(~scanf("%d%d",&n,&m))
{
memset(num,0,sizeof(num));
memset(tree,0,sizeof(tree));
for (int i=1; i<=n; i++ )
scanf("%d",&num[i]);
build(1,1,n);
while (m--)
{
char ch;
int a,b;
scanf(" %c",&ch);
scanf("%d%d",&a,&b);
if (ch=='Q')
{
printf("%d\n",find1(1,a,b));
}
if (ch=='U')
update(a,b,1);
}
}
return 0;
}

HDU 1754 I Hate It (线段树)的更多相关文章

  1. hdu 1754 I Hate It 线段树 点改动

    // hdu 1754 I Hate It 线段树 点改动 // // 不多说,裸的点改动 // // 继续练 #include <algorithm> #include <bits ...

  2. HDU 1754 I Hate It(线段树之单点更新,区间最值)

    I Hate It Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total ...

  3. HDU 1754 I Hate It 线段树RMQ

    I Hate It Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=175 ...

  4. HDU 1754 I Hate It 线段树单点更新求最大值

    题目链接 线段树入门题,线段树单点更新求最大值问题. #include <iostream> #include <cstdio> #include <cmath> ...

  5. HDU 1754 I Hate It(线段树单点替换+区间最值)

    I Hate It [题目链接]I Hate It [题目类型]线段树单点替换+区间最值 &题意: 本题目包含多组测试,请处理到文件结束. 在每个测试的第一行,有两个正整数 N 和 M ( 0 ...

  6. HDU 1754 I Hate It (线段树)

    题意:略. 析:裸的线段树. 代码如下: #pragma comment(linker, "/STACK:1024000000,1024000000") #include < ...

  7. HDU 1754 I Hate It(线段树区间查询,单点更新)

    描述 很多学校流行一种比较的习惯.老师们很喜欢询问,从某某到某某当中,分数最高的是多少. 这让很多学生很反感.不管你喜不喜欢,现在需要你做的是,就是按照老师的要求,写一个程序,模拟老师的询问.当然,老 ...

  8. hdu 1754 I Hate It 线段树基础题

    Problem Description 很多学校流行一种比较的习惯.老师们很喜欢询问,从某某到某某当中,分数最高的是多少. 这让很多学生很反感. 不管你喜不喜欢,现在需要你做的是,就是按照老师的要求, ...

  9. hdu 1754 I Hate It(线段树水题)

    >>点击进入原题测试<< 思路:线段树水题,可以手敲 #include<string> #include<iostream> #include<a ...

随机推荐

  1. promise你懂了吗?

    你能答对几题? 题目一 const promise = new Promise((resolve, reject) => { console.log(1) resolve() console.l ...

  2. 第147天:web前端开发中的各种居中总结

    一.水平居中 方法① :行内元素 (父元素)text-align,(子元素)inline-block .parent{text-align: center;} .child{display: inli ...

  3. bzoj2383[CEOI2011] ballons

    题意 在一条数轴上从左向右有一些气球,每个气球一开始位于横坐标xi的位置,是半径为0的圆.现在开始从左向右给每个气球充气.被充气的气球的半径会不断变大,直到达到这个气球的半径上限Ri或者这个气球和之前 ...

  4. 转---秒杀多线程第五篇 经典线程同步 关键段CS

    上一篇<秒杀多线程第四篇 一个经典的多线程同步问题>提出了一个经典的多线程同步互斥问题,本篇将用关键段CRITICAL_SECTION来尝试解决这个问题. 本文首先介绍下如何使用关键段,然 ...

  5. 批量后台执行fio性能测试脚本

    安装ansible工具: )直接yum install -y ansible; )然后更改配置,/etc/ansible/ansible.cfg,将里面的host_key_checking = Fal ...

  6. Zebras CodeForces - 950C(思维)

    借鉴自: https://www.cnblogs.com/SuuT/p/8619227.html https://blog.csdn.net/my_sunshine26/article/details ...

  7. bzoj2054: 疯狂的馒头(并查集)

    每个区间只被覆盖一次,求每个点被哪种区间覆盖或者某个区间是否已经被覆盖过都可以用并查集做. 做法:每个点都指向当前被覆盖区间的右端点+1的位置,某个点的下一个没被覆盖的点是gf(i),同理如果某个区间 ...

  8. 图像处理之Canny边缘检测

    http://blog.csdn.net/jia20003/article/details/41173767 图像处理之Canny 边缘检测 一:历史 Canny边缘检测算法是1986年有John F ...

  9. Qt实现截屏并保存(转载)

    原博地址:http://blog.csdn.net/qinchunwuhui/article/details/52869451?_t_t_t=0.28889142944202306 目前对应用实现截屏 ...

  10. HDU--1874

    原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=1874 分析:SPFA|Dijkastra. #include<iostream> #inc ...