sklearn参数优化方法

 http://www.cnblogs.com/nolonely/p/7007961.html
 

学习器模型中一般有两个参数:一类参数可以从数据中学习估计得到,还有一类参数无法从数据中估计,只能靠人的经验进行指定,后一类参数就叫超参数

比如,支持向量机里的C,Kernel,gama,朴素贝叶斯里的alpha等,在学习其模型的设计中,我们要搜索超参数空间为学习器模型找到最合理的超参数,可以通过以下方法获得学习器模型的参数列表和当前取值:estimator.get_params()

sklearn 提供了两种通用的参数优化方法:网络搜索和随机采样,

  • 网格搜索交叉验证(GridSearchCV):以穷举的方式遍历所有可能的参数组合
  • 随机采样交叉验证(RandomizedSearchCV):依据某种分布对参数空间采样,随机的得到一些候选参数组合方案

sklearn.model_selection:GridSearchCV,RandomizedSearchCV,ParameterGrid,ParameterSampler,fit_grid_point

①GridSearchCV:

该方法提供了在参数网格上穷举候选参数组合的方法。参数网格由参数param_grid来指定,比如,下面展示了设置网格参数param_grid的一个例子:

param_grid=[

  {'C':[1,10,100,1000],'kernel':['linear']},

  {'C':[1,10,100,1000],'gamma':[0.001,0.0001],'kernel':['rbf']}

  ]

上面的参数指定了要搜索的两个网格(每个网格就是一个字典):第一个里面有4个参数组合节点,第二个里面有4*2=8个参数组合节点

GridSearchCV的实例实现了通用的estimator API:当在数据集上训练的时候,所有可能的参数组合将会被评估,训练完成后选组最优的参数组合对应的estimator。

from sklearn import svm,datasets
from sklearn.model_selection import GridSearchCV iris=datasets.load_iris()
parameters={'kernel':('rbf','linear'),'C':[1,5,10]}
svr=svm.SVC()
clf=GridSearchCV(svr,parameters)
clf.fit(iris.data,iris.target)
print(clf.best_estimator_)

最终结果:

SVC(C=1, cache_size=200, class_weight=None, coef0=0.0,
decision_function_shape=None, degree=3, gamma='auto', kernel='linear',
max_iter=-1, probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=False)

②RandomizedSearchCV

RandomizedSearchCV类实现了在参数空间上进行随机搜索的机制,其中参数的取值是从某种概率分布中抽取的,这个概率分布描述了对应的参数的所有取值情况的可能性,这种随机采样机制与网格穷举搜索相比,有两大优点:

  • 相比于整体参数空间,可以选择相对较少的参数组合数量
  • 添加参数节点不影响性能,不会降低效率

指定参数的采样范围和分布可以用一个字典开完成,跟网格搜索很像,另外,计算预算(总共要采样多少参数组合或者迭代做多少次)可以用参数n_iter来指定,针对每一个参数,既可以使用可能取值范围内的概率分布,也可以指定一个离散的取值列表(离散的列表将被均匀采样)

{'C':scpiy.stats.expon(scale=100),'gamma':scipy.stats.expon(scale=.1),'kernel':['rbf'],'class_weight':['balanced':None]}

上边的例子中:C服从指数分布,gamma服从指数分布,这个例子使用了scipy.stats模块,其中包含了很多有用的分布用来产生参数采样点,像expon,gamma,uniform or randint,原则上,任何函数都可以传递进去,只要他提供一个rvs(random variate sample)方法来返回采样值,rvs函数的连续调用应该能够保证产生独立同分布的样本值。

import numpy as np
from time import time
from scipy.stats import randint as sp_randint
from sklearn.model_selection import RandomizedSearchCV
from sklearn.datasets import load_digits
from sklearn.ensemble import RandomForestClassifier def report(results,n_top=3):
for i in range(1,n_top+1):
candidates=np.flatnonzero(results['rank_test_score']==i)
for candidate in candidates:
print("Model with rank:{0}".format(i))
print("Mean validation score:{0:.3f}(std:{1:.3f})".format(
results['mean_test_score'][candidate],
results['std_test_score'][candidate]))
print("Parameters:{0}".format(results['params'][candidate]))
print("") digis=load_digits()
X,y=digis.data,digis.target clf=RandomForestClassifier(n_estimators=20)
#设置想要优化的超参数以及他们的取值分布
param_dist={"max_depth":[3,None],
"max_features":sp_randint(1,11),
"min_samples_split":sp_randint(2,11),
"min_samples_leaf":sp_randint(1,11),
"bootstrap":[True,False],
"criterion":['gini','entropy']
}
#开启超参数空间的随机搜索
n_iter_search=20
random_search=RandomizedSearchCV(clf,param_distributions=param_dist,n_iter=n_iter_search)
start=time()
random_search.fit(X,y)
print("RandomizedSearchCV took %.3f seconds for %d candidates"
"parameter settings."%((time()-start),n_iter_search))
report(random_search.cv_results_)

最终结果:

RandomizedSearchCV took 3.652 seconds for 20 candidatesparameter settings.
Model with rank:1
Mean validation score:0.930(std:0.019)
Parameters:{'max_depth': None, 'min_samples_leaf': 2, 'criterion': 'entropy', 'max_features': 8, 'bootstrap': False, 'min_samples_split': 10} Model with rank:2
Mean validation score:0.928(std:0.009)
Parameters:{'max_depth': None, 'min_samples_leaf': 2, 'criterion': 'gini', 'max_features': 4, 'bootstrap': False, 'min_samples_split': 10} Model with rank:3
Mean validation score:0.924(std:0.009)
Parameters:{'max_depth': None, 'min_samples_leaf': 1, 'criterion': 'gini', 'max_features': 9, 'bootstrap': True, 'min_samples_split': 5}

③超参数优化中的随机搜索和网格搜索对比试验以随机森林分类器为优化对象。所有影响分类器学习的参数都被搜索了,除了树的数量之外,随机搜索和网格优化都在同一个超参数空间上对随机森林分类器进行优化,虽然得到的超参数设置组合比较相似,但是随机搜索的运行时间却比网络搜索显著的少,随机搜索得到的超参数组合的性能稍微差一点,但这很大程度上由噪声引起的,在实践中,我们只能挑几个比较重要的参数组合来进行优化。

import numpy as np
from time import time
from scipy.stats import randint as sp_randint
from sklearn.model_selection import RandomizedSearchCV
from sklearn.model_selection import GridSearchCV
from sklearn.datasets import load_digits
from sklearn.ensemble import RandomForestClassifier def report(results,n_top=3):
for i in range(1,n_top+1):
candidates=np.flatnonzero(results['rank_test_score']==i)
for candidate in candidates:
print("Model with rank:{0}".format(i))
print("Mean validation score:{0:.3f}(std:{1:.3f})".format(
results['mean_test_score'][candidate],
results['std_test_score'][candidate]))
print("Parameters:{0}".format(results['params'][candidate]))
print("") digis=load_digits()
X,y=digis.data,digis.target clf=RandomForestClassifier(n_estimators=20) print("==========下面是RandomizedSearchCV的测试结果===============")
#设置想要优化的超参数以及他们的取值分布
param_dist={"max_depth":[3,None],
"max_features":sp_randint(1,11),
"min_samples_split":sp_randint(2,11),
"min_samples_leaf":sp_randint(1,11),
"bootstrap":[True,False],
"criterion":['gini','entropy']
}
#开启超参数空间的随机搜索
n_iter_search=20
random_search=RandomizedSearchCV(clf,param_distributions=param_dist,n_iter=n_iter_search)
start=time()
random_search.fit(X,y)
print("RandomizedSearchCV took %.3f seconds for %d candidates"
"parameter settings."%((time()-start),n_iter_search))
report(random_search.cv_results_) print("==========下面是GridSearchCV的测试结果===============")
#在所有参数上搜索,找遍所有网络节点
param_grid={"max_depth":[3,None],
"max_features":[1,3,10],
"min_samples_split":[2,3,10],
"min_samples_leaf":[1,3,10],
"bootstrap":[True,False],
"criterion":['gini','entropy']
}
#开启超参数空间的网格搜索
grid_search=GridSearchCV(clf,param_grid=param_grid)
start=time()
grid_search.fit(X,y)
print("GridSearchCV took %.2f seconds for %d candidates parameter settings."
%(time()-start,len(grid_search.cv_results_['params'])))
report(random_search.cv_results_)

最终结果:

==========下面是RandomizedSearchCV的测试结果===============
RandomizedSearchCV took 3.874 seconds for 20 candidatesparameter settings.
Model with rank:1
Mean validation score:0.928(std:0.010)
Parameters:{'max_depth': None, 'min_samples_leaf': 2, 'criterion': 'entropy', 'max_features': 10, 'bootstrap': False, 'min_samples_split': 2} Model with rank:2
Mean validation score:0.920(std:0.007)
Parameters:{'max_depth': None, 'min_samples_leaf': 4, 'criterion': 'gini', 'max_features': 6, 'bootstrap': False, 'min_samples_split': 2} Model with rank:2
Mean validation score:0.920(std:0.009)
Parameters:{'max_depth': None, 'min_samples_leaf': 2, 'criterion': 'entropy', 'max_features': 7, 'bootstrap': True, 'min_samples_split': 10} ==========下面是GridSearchCV的测试结果===============
GridSearchCV took 37.64 seconds for 216 candidates parameter settings.
Model with rank:1
Mean validation score:0.928(std:0.010)
Parameters:{'max_depth': None, 'min_samples_leaf': 2, 'criterion': 'entropy', 'max_features': 10, 'bootstrap': False, 'min_samples_split': 2} Model with rank:2
Mean validation score:0.920(std:0.007)
Parameters:{'max_depth': None, 'min_samples_leaf': 4, 'criterion': 'gini', 'max_features': 6, 'bootstrap': False, 'min_samples_split': 2} Model with rank:2
Mean validation score:0.920(std:0.009)
Parameters:{'max_depth': None, 'min_samples_leaf': 2, 'criterion': 'entropy', 'max_features': 7, 'bootstrap': True, 'min_samples_split': 10}

超参数空间的搜索技巧

  • 技巧一,指定一个合适的目标测度对模型进行估计

    默认情况下,参数搜索使用estimator的score函数来评估模型在某种参数配置下的性能:

      分类器对应于 sklearn.metrics.accuracy_score

      回归器对应于sklearn.metrics.r2_score

  但是在某些应用中,其他的评分函数获取更加的合适。(比如在非平衡的分类问题中,准确率sccuracy_score通常不管用。这时,可以通过参数scoring来指定GridSearchCV类或者RandomizedSearchCV类内  部用我们自定义的评分函数)

  • 技巧二、使用SKlearn的PipeLine将estimators和他们的参数空间组合起来
  • 技巧三、合理划分数据集:开发集(用于GridSearchCV)+测试集(Test)使用model_selection.train_test_split()函数来搞定!
  • 技巧四、并行化:(GridSearchCV)和(RandomizedSearchCV)在参数节点的计算上可以做到并行计算,这个通过参数”n_jobs“来指定。
  • 技巧五、提高在某些参数节点上发生错误时的鲁棒性:在出错节点上只是提示警告。可以通过设置参数error_score=0(or=np.NaN)来搞定!

《转》sklearn参数优化方法的更多相关文章

  1. sklearn参数优化方法

    学习器模型中一般有两个参数:一类参数可以从数据中学习估计得到,还有一类参数无法从数据中估计,只能靠人的经验进行指定,后一类参数就叫超参数 比如,支持向量机里的C,Kernel,gama,朴素贝叶斯里的 ...

  2. sklearn参数优化

    学习器模型中一般有两个参数:一类参数可以从数据中学习估计得到,还有一类参数无法从数据中估计,只能靠人的经验进行指定,后一类参数就叫超参数 比如,支持向量机里的C,Kernel,gama,朴素贝叶斯里的 ...

  3. 积神经网络(CNN)的参数优化方法

    http://www.cnblogs.com/bonelee/p/8528863.html 积神经网络的参数优化方法——调整网络结构是关键!!!你只需不停增加层,直到测试误差不再减少. 积神经网络(C ...

  4. Deep Learning基础--参数优化方法

    1. 深度学习流程简介 1)一次性设置(One time setup)          -激活函数(Activation functions) - 数据预处理(Data Preprocessing) ...

  5. 【DL】几种参数优化方法的比较

    https://zhuanlan.zhihu.com/p/22252270 结尾的两张图不能更赞. PS:在用lstm做文本分类的时候,加了L2正则,把optim方法由之前的SGD换成Adam,效果提 ...

  6. hbase 程序优化 参数调整方法

    hbase读数据用scan,读数据加速的配置参数为: Scan scan = new Scan(); scan.setCaching(500); // 1 is the default in Scan ...

  7. JVM组成、GC回收机制、算法、JVM常见启动参数、JAVA出现OOM,如何解决、tomcat优化方法

    JVM组成.GC回收机制.算法.JVM常见启动参数.JAVA出现OOM,如何解决.tomcat优化方法

  8. Limit参数优化MySQL查询的方法

    在做一些查询时,总希望能避免数据库引擎做全表扫描,因为全表扫描时间长,而且其中大部分扫描对客户端而言是没有意义的.那么,在mysql中有那些方式是可以避免全表扫面?除了通过使用索引列或分区等方式来进行 ...

  9. 参数优化-API

    网格搜索 对给定参数进行组合,用某标准进行评价,只适合小数据集 class sklearn.model_selection.GridSearchCV(estimator, param_grid, sc ...

随机推荐

  1. 直接抱过来dd大牛的《背包九讲》来做笔记

    P01: 01背包问题 题目 有N件物品和一个容量为V的背包.第i件物品的费用是c[i],价值是w[i].求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大. 基本思路 这是最 ...

  2. Java 学习笔记 ------第五章 对象封装

    本章学习目标: 了解封装的概念与实现 定义类.构造函数与方法 使用方法重载与不定长度自变量 了解static方法 一.Java封装概念 在面向对象程式设计方法中,封装(英语:Encapsulation ...

  3. Controller与Switch建立连接

    连接建立 控制器和交换机认识的过程. 用于交互Openflow版本,如果不同则没有后续. 同1. 特征请求,控制器询问交换机的特征信息. 交换机回复控制器,相当于把整个交换机的所有配置都告诉控制器了. ...

  4. ios framework 使用图片资源

    framework 的制作工程见:http://www.cocoachina.com/ios/20141126/10322.html: 遇到问题: 由于自己的framework 要使用图片资源,最后找 ...

  5. 《IT小小鸟》的阅读心得

    新年过后我们迎来大一下学期,想想刚迈入大学的我们,充满着好奇与兴奋,仿佛就在昨天.时光飞逝而今,虽经过一学期的学习,仍对计算机专业充满困惑,对未来充满迷茫. 在我感到迷茫的时候,老师给我们介绍了这样的 ...

  6. C#的lock语句

    文章:lock 语句(C# 参考) 代码: using System; using System.Threading.Tasks; public class Account { private rea ...

  7. BETA阶段冲刺

    1.介绍小组新加入的成员,Ta担任的角色 新成员 担任工作 江鹭涛 前端设计 2.讨论是否需要更换团队的PM 不需要,上阶段配合不错,这阶段继续努力 3.下一阶段需要改进完善的功能 服务器并发处理,界 ...

  8. iOS- 全方位解析.crash文件崩溃报告

    1.前言 想来每个iOS攻城狮,都免不了要接触.crash文件 那么什么是.crash文件? iOS app的所有崩溃记录都会记录在设备上,所以对于和我一样没有集成让用户发送崩溃报告功能的iOS开发者 ...

  9. UVALive6434_Number Assignment

    简单dp题. 这样的,意思为给你n个数,要你现在将这n个数分为m组,使得所有组内最大值与最小值的差的和最小. 其实可以这样来考虑这个问题,首先可以把所有的数字从小到大排个序,显然如果有一种取法是最优的 ...

  10. HDU4045_Machine scheduling

    题意为要你从编号为1-n的所有机器中间选择出r个机器且每一个机器的编号只差不小于k-1,然后将选择的r个机器分为m组有多少种方案. 其实这题目的两个步骤是相互独立的. 总共的方案数等于选择的方案数乘以 ...