【树链剖分换根】P3979 遥远的国度
Description
zcwwzdjn在追杀十分sb的zhx,而zhx逃入了一个遥远的国度。当zcwwzdjn准备进入遥远的国度继续追杀时,守护神RapiD阻拦了zcwwzdjn的去路,他需要zcwwzdjn完成任务后才能进入遥远的国度继续追杀。
问题是这样的:遥远的国度有n个城市,这些城市之间由一些路连接且这些城市构成了一颗树。这个国度有一个首都,我们可以把这个首都看做整棵树的根,但遥远的国度比较奇怪,首都是随时有可能变为另外一个城市的。遥远的国度的每个城市有一个防御值,有些时候RapiD会使得某两个城市之间的路径上的所有城市的防御值都变为某个值。
RapiD想知道在某个时候,如果把首都看做整棵树的根的话,那么以某个城市为根的子树的所有城市的防御值最小是多少。
由于RapiD无法解决这个问题,所以他拦住了zcwwzdjn希望他能帮忙。但zcwwzdjn还要追杀sb的zhx,所以这个重大的问题就被转交到了你的手上。
Input
第1行两个整数n m,代表城市个数和操作数。
第2行至第n行,每行两个整数 u v,代表城市u和城市v之间有一条路。
第n+1行,有n个整数,代表所有点的初始防御值。
第n+2行一个整数 id,代表初始的首都为id。
第n+3行至第n+m+2行,首先有一个整数opt,如果opt=1,接下来有一个整数id,代表把首都修改为id;如果opt=2,接下来有三个整数p1 p2 v,代表将p1 p2路径上的所有城市的防御值修改为v;如果opt=3,接下来有一个整数 id,代表询问以城市id为根的子树中的最小防御值。
Output
对于每个opt=3的操作,输出一行代表对应子树的最小点权值。
Solution
换根板子题。
先钦定1是根dfs树剖一波,然后考虑几个操作。
链修改的操作和树形没关系,直接做。
考虑查询操作,画图以后可以发现,当一个点\(u\)不在点\(v\)的子树中时(原树上),以点\(u\)为根时\(v\)的子树形态不变。证明可以考虑此时\(u\)一定是通过\(v\)的父亲和\(v\)连接的,换根后还是通过\(v\)的父亲,而其他的子树显然还在\(u\)下方。在此不做展开。
当点\(u\)在\(v\)的子树内时,发现\(u\)和\(v\)是通过指向\(u\)的儿子链接的。于是\(u\)的那个儿子儿子所能连接到的所有点(除通过\(v\)连接的以外)都会在新树上直接作为\(u\)的子树而不是\(v\)的子树,剩下的就是\(v\)的子树了。而那个儿子能链接的所有点恰好是该儿子的子树。于是查询时查询整棵树去掉该儿子子树的min即可。
另外特判\(v\)是根的情况。直接查询子树
Code
#include <cstdio>
#include <algorithm>
#ifdef ONLINE_JUDGE
#define freopen(a, b, c)
#endif
#define rg register
#define ci const int
#define cl const long long
typedef long long int ll;
namespace IPT {
const int L = 1000000;
char buf[L], *front=buf, *end=buf;
char GetChar() {
if(front == end) {
end = buf + fread(front = buf, 1, L, stdin);
if(front == end) return -1;
}
return *(front++);
}
}
template <typename T>
inline void qr(T &x) {
rg char ch = IPT::GetChar(), lst = ' ';
while((ch > '9') || (ch < '0')) lst = ch, ch=IPT::GetChar();
while((ch >= '0') && (ch <= '9')) x = (x << 1) + (x << 3) + (ch ^ 48), ch = IPT::GetChar();
if(lst == '-') x = -x;
}
template <typename T>
inline void ReadDb(T &x) {
rg char ch = IPT::GetChar(), lst = ' ';
while((ch > '9') || (ch < '0')) lst = ch, ch = IPT::GetChar();
while((ch >= '0') && (ch <= '9')) x = x * 10 + (ch ^ 48), ch = IPT::GetChar();
if(ch == '.') {
ch = IPT::GetChar();
double base = 1;
while((ch >= '0') && (ch <= '9')) x += (ch ^ 48) * ((base *= 0.1)), ch = IPT::GetChar();
}
if(lst == '-') x = -x;
}
namespace OPT {
char buf[120];
}
template <typename T>
inline void qw(T x, const char aft, const bool pt) {
if(x < 0) {x = -x, putchar('-');}
rg int top=0;
do {OPT::buf[++top] = x % 10 + '0';} while( x /= 10);
while(top) putchar(OPT::buf[top--]);
if(pt) putchar(aft);
}
const int maxn = 100010;
const int maxm = 200010;
struct Edge {
int to, nxt;
};
Edge edge[maxm]; int hd[maxn], ecnt=1;
inline void cont(ci from, ci to) {
Edge &e = edge[++ecnt];
e.to = to; e.nxt = hd[from]; hd[from] = ecnt;
}
int n, m, vistime, newrot;
int sz[maxn], dfn[maxn], otn[maxn], son[maxn], top[maxn], rmp[maxn], MU[maxn], deepth[maxn], fa[maxn];
const int INF = (1ll << 31) - 1;
struct Tree {
Tree *ls, *rs;
int v, tag, l, r;
inline void pushup() {
this->v = INF;
if(this->ls) this->v = this->ls->v;
if(this->rs) this->v = std::min(this->rs->v, this->v);
}
inline void maketag(ci _v) {
this->v = _v;
this->tag = _v;
}
inline void pushdown() {
if(!this->tag) return;
if(this->ls) this->ls->maketag(this->tag);
if(this->rs) this->rs->maketag(this->tag);
this->tag = 0;
}
};
Tree *pool[maxm],qwq[maxm],*rot;
int poltp;
void reading();
void dfs(ci, ci);
void DFS(ci, ci);
void buildpool();
void buildroot();
void build(Tree*, ci, ci);
void change(int, int, int);
void update(Tree*, ci, ci, ci);
int ask(Tree*, ci, ci);
int main() {
freopen("1.in", "r", stdin);
qr(n); qr(m);
reading();
qr(newrot) ;
dfs(newrot, 0); DFS(newrot, newrot);
buildpool(); buildroot();
build(rot, 1, n);
int a, b, c, d;
while (m--) {
a = 0; qr(a);
if (a == 1) {
newrot = 0; qr(newrot);
} else if (a == 2) {
b = c = d = 0; qr(b); qr(c); qr(d);
change(b, c, d);
} else if (a == 3) {
a=0; qr(a);
if (a == newrot) {
qw(rot->v, '\n', true);
} else if ((dfn[newrot] >= dfn[a]) && (dfn[newrot] <= otn[a])) {
int tp = newrot;
while(deepth[fa[top[tp]]] > deepth[a]) tp = fa[top[tp]];
if(dfn[top[tp]] > dfn[a]) tp = top[tp];
else tp = rmp[dfn[a] + 1];
qw(std::min(ask(rot, 1, dfn[tp] - 1), ask(rot, otn[tp]+1, n)), '\n', true);
} else {
qw(ask(rot,dfn[a],otn[a]), '\n', true);
}
}
}
return 0;
}
void reading() {
int a,b;
for (rg int i = 1; i < n; ++i) {
a = b = 0; qr(a); qr(b);
cont(a, b); cont(b, a);
}
for(rg int i = 1; i <= n; ++i) qr(MU[i]);
}
void dfs(ci u, ci pree) {
sz[u] = 1;
deepth[u] = deepth[fa[u] = edge[pree].to] + 1;
for (int i = hd[u]; i; i = edge[i].nxt) if (i != pree) {
int &to = edge[i].to;
dfs(to, i^1);
if(sz[to] > sz[son[u]]) son[u] = to;
}
}
void DFS(ci u, ci tp) {
if((!u) || (dfn[u])) return;
dfn[u] = ++vistime;
rmp[vistime] = u;
top[u] = tp;
DFS(son[u], tp);
for (int i = hd[u]; i; i = edge[i].nxt) {
int &to = edge[i].to;
if(to == son[u]) continue;
DFS(to,to);
}
otn[u] = vistime;
}
void buildpool() {
for (rg int i = 0; i < maxm; ++i) pool[i] = qwq+i;
poltp = maxm - 1;
}
inline void buildroot() {
rot = pool[poltp--];
}
void build(Tree *u, ci l, ci r) {
u->l = l; u->r = r;
if(l == r) {
u->v = MU[rmp[l]];
return;
}
int mid = (l + r) >> 1;
if(l <= mid) {
u->ls = pool[poltp--];
build(u->ls, l, mid);
}
if(mid < r) {
u->rs = pool[poltp--];
build(u->rs, mid+1, r);
}
u->pushup();
}
void change(int u, int v, int p) {
while(top[u] != top[v]) {
if(deepth[top[u]] < deepth[top[v]]) std::swap(u, v);
update(rot, dfn[top[u]], dfn[u], p);
u = fa[top[u]];
}
if(deepth[u] < deepth[v]) std::swap(u, v);
update(rot, dfn[v], dfn[u], p);
}
void update(Tree *u, ci l, ci r, ci v) {
if((u->l > r) || (u->r < l)) return;
if((u->l >= l) && (u->r <= r)) {u->maketag(v); return;}
u->pushdown();
if(u->ls) update(u->ls, l, r, v);
if(u->rs) update(u->rs, l, r, v);
u->pushup();
}
int ask(Tree *u, ci l, ci r) {
if((u->l > r) || (u->r < l)) return INF;
if((u->l >= l) && (u->r <= r)) return u->v;
u->pushdown();
int _ret = INF;
if(u->ls) _ret = ask(u->ls, l, r);
if(u->rs) _ret = std::min(ask(u->rs, l, r), _ret);
return _ret;
}
Summary
树上的链操作与根无关
涉及到子树的操作可以通过讨论解决。
【树链剖分换根】P3979 遥远的国度的更多相关文章
- 遥远的国度 (树链剖分换根),洛谷P3979
析:显然,若没有换根操作,则为树链剖分板子题,但是这道题我们考虑换根操作 考虑这样一个性质:在一棵树上,两点的距离路径是唯一的!! 也就是说,我们在修改路径上的点权时,不必考虑根在哪里,直接利用模板修 ...
- [模板] dfs序, 树链剖分, 换根
树链剖分 树链剖分是一种对树的分治, 可以把树上的任意一条链分解为 \(O(\log n)\) 条在dfs序上相邻的子链, 便于数据结构(如线段树)来维护. 另外, 子树在dfs序上也是一个连续的区间 ...
- 洛谷P3979 遥远的国度 树链剖分+分类讨论
题意:给出一棵树,这棵树每个点有权值,然后有3种操作.操作一:修改树根为rt,操作二:修改u到v路径上点权值为w,操作三:询问以rt为根x子树的最小权值. 解法:如果没有修改树根操作那么这题就是树链剖 ...
- 7.18 NOI模拟赛 树论 线段树 树链剖分 树的直径的中心 SG函数 换根
LINK:树论 不愧是我认识的出题人 出的题就是牛掰 == 他好像不认识我 考试的时候 只会写42 还有两个subtask写挂了 拿了37 确实两个subtask合起来只有5分的好成绩 父亲能转移到自 ...
- 树链剖分(附带LCA和换根)——基于dfs序的树上优化
.... 有点懒: 需要先理解几个概念: 1. LCA 2. 线段树(熟练,要不代码能调一天) 3. 图论的基本知识(dfs序的性质) 这大概就好了: 定义: 1.重儿子:一个点所连点树size最大的 ...
- BZOJ 3083: 遥远的国度 dfs序,树链剖分,倍增
今天再做一天树的题目,明天要开始专攻图论了.做图论十几天之后再把字符串搞搞,区域赛前再把计几看看. 3083: 遥远的国度 Time Limit: 10 Sec Memory Limit: 128 ...
- BZOJ_3083_遥远的国度_树链剖分+线段树
BZOJ_3083_遥远的国度_树链剖分 Description 描述 zcwwzdjn在追杀十分sb的zhx,而zhx逃入了一个遥远的国度.当zcwwzdjn准备进入遥远的国度继续追杀时,守护神Ra ...
- BZOJ3083 遥远的国度 【树链剖分】
BZOJ3083 遥远的国度 Description zcwwzdjn在追杀十分sb的zhx,而zhx逃入了一个遥远的国度.当zcwwzdjn准备进入遥远的国度继续追杀时,守护神RapiD阻拦了zcw ...
- BZOJ 3083 遥远的国度(树链剖分+LCA)
Description 描述zcwwzdjn在追杀十分sb的zhx,而zhx逃入了一个遥远的国度.当zcwwzdjn准备进入遥远的国度继续追杀时,守护神RapiD阻拦了zcwwzdjn的去路,他需要z ...
随机推荐
- [二读]The Art of Pompeii's Influence on Neo-Classicism
The Art of Pompeii's Influence on Neo-Classicism The discovery of Pompeii's ruins in 1599 profoundly ...
- Python+MySQL开发医院网上预约系统(课程设计)一
一:开发环境的配置 1:桌面环境为cnetos7+python2.7 2:MySQL的安装与配置 1)MySQL的安装 MySQL官方文档: http://dev.mysql.com/doc/mysq ...
- 4星|《亿万》:FBI大战华尔街对冲基金大鳄
亿万:围剿华尔街大白鲨 全书尝试还原2008-2013年前后FBI指控赛克资本老板科恩通过内幕交易盈利的案件细节. 作者花了数年时间,采访了200多位当事人,阅读了海量的相关资料.书中交代了科恩的发家 ...
- Pvmove中断后恢复LV状态
Pvmove中断后恢复LV状态 pvmove执行时关闭中断窗口后,pvmove进程会被强制杀掉,从而导致lv的状态异常,无法重新进行pvmove和其他lvm镜像增加相关操作,可以通过如下方式修复: ...
- JAVA学习笔记--组合与继承
JAVA一个很重要的功能就是代码的可复用性,代码复用可以大大提升编程效率.这里主要介绍两种代码复用方式:组合和继承. 一.组合 组合比较直观,只需在新的类中产生现有类的对象,新的类由现有类的对象组成, ...
- 在jre1.8版本下,使用ikvm将jar转换为dll,以供c#调用
由于合作方使用.net编程,jar包不能用,需要转换成dll格式,来回转换了十几个dll文件(心塞..),终于生成了一个可用的.在这里将走过的弯弯绕绕总结下,希望遇到相似问题的同好们,能走得顺利些. ...
- Centos7与Centos6的区别
CentOS7 修改网卡名称为eth0.eth1 方法1 修改网卡名称 cd /etc/sysconfig/network-scripts/ mv ifcfg-eno16777736 ifcfg-et ...
- win2008 r2 开启TLS1.2
Windows Registry Editor Version 5.00 [HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\SecurityPr ...
- 第四次c++作业
一,GitHub地址 https://github.com/ronghuijun/3Elevators-scheduling 二,命令行和文件读写 百度有时候有点蒙,命令行用的是D:>Eleva ...
- [codecademy]fonts in css
Great job! You learned how to style an important aspect of the user experience: fonts! Let's review ...