先做总结:

1、为什么用读写锁 ReentrantReadWriteLock?

重入锁ReentrantLock是排他锁,在同一时刻仅有一个线程可以进行访问,但是在大多数场景下,大部分时间都是提供读服务,而写服务占有的时间较少。然而读服务不存在数据竞争问题,如果一个线程在读时禁止其他线程读势必会导致性能降低。所以就提供了读写锁。

读写锁维护着一对锁,一个读锁和一个写锁。通过分离读锁和写锁,使得并发性比一般的排他锁有了较大的提升:在同一时间可以允许多个读线程同时访问,但是在写线程访问时,所有读线程和写线程都会被阻塞。

2、读写锁实现原理:

(1)每个ReentrantReadWriteLock对象都对应着读锁和写锁两个锁。

(2)ReentrantReadWriteLock通过其属性sync(继承了AQS),一个对象实现了读写两个锁。

(3)sync.state(int)分为高 16 位和低16位,高16位用于共享模式ReadLock,低16位用于独占模式WriteLock

(4)获取写锁标志:

    1.sync.state的低16位(0代表没有被占用,大于0代表有线程持有当前锁(锁可以重入,每次重入都+1) 最多2^16-1次重入

    2.sync.exclusiveOwnerThread == Thread.currentThread()

(5)获取读锁标志:

  1.state的高16位(0代表没有被占用,大于0代表有线程持有当前锁(锁可以重入,每次重入都+1) 最多2^16-1次重入

  2.ThreadLocalHoldCounter readHolds; // 记录线程持有的读锁数量(ThreadLocalHoldCounter extends ThreadLocal)

    readHolds.threadLocals - Map<ThreadLocal, HoldCounter>

    HoldCounter - count  tid

    (关于ThreadLocal:Java并发(二十):线程本地变量ThreadLocal

  3.sync.cachedHoldCounter 记录最后一个获取读锁的线程的读锁重入次数,用于缓存提高性能

  4.sync.firstReader 第一个获取读锁的线程(并且其未释放读锁),以及它持有的读锁数量  提高性能

(6)ReentrantReadWriteLock的内部类WriteLock/ReadLock通过操作sync的属性实现的锁的操作。

一、类结构

public class ReentrantReadWriteLock implements ReadWriteLock, java.io.Serializable {
// 属性
private final ReentrantReadWriteLock.ReadLock readerLock;
private final ReentrantReadWriteLock.WriteLock writerLock;
final Sync sync; // 锁 // 内部类
abstract static class Sync extends AbstractQueuedSynchronizer {}
static final class FairSync extends Sync {}
static final class NonfairSync extends Sync {}
public static class ReadLock implements Lock, java.io.Serializable {}
public static class WriteLock implements Lock, java.io.Serializable {}
}

二、读写锁实现

ReadLock 使用了共享模式,WriteLock 使用了独占模式。

ReadLock 和 WriteLock都是通过同一个Sync实例实现的。

AQS 将 state(int)分为高 16 位和低16位,高16位用于共享模式ReadLock,低16位用于独占模式WriteLock 。

    static final int SHARED_SHIFT   = 16;
static final int SHARED_UNIT = (1 << SHARED_SHIFT);
static final int MAX_COUNT = (1 << SHARED_SHIFT) - 1;
static final int EXCLUSIVE_MASK = (1 << SHARED_SHIFT) - 1; static int sharedCount(int c) { return c >>> SHARED_SHIFT; } // 无符号补0右移16位 - 读锁
static int exclusiveCount(int c) { return c & EXCLUSIVE_MASK; } // 抹掉高16位 - 写锁

WriteLock:

1.state的低16位(0代表没有被占用,大于0代表有线程持有当前锁(锁可以重入,每次重入都+1) 最多2^16-1次重入

2.exclusiveOwnerThread == Thread.currentThread()

ReadLock:

1.state的高16位(0代表没有被占用,大于0代表有线程持有当前锁(锁可以重入,每次重入都+1) 最多2^16-1次重入

2.ThreadLocalHoldCounter readHolds; // 记录线程持有的读锁数量

  readHolds.threadLocals - Map<Thread, HoldCounter>

  HoldCounter - count  tid

三、源码分析

写锁获取:

    // ReentrantReadWriteLock.WriteLock.lock()
public void lock() {
sync.acquire(1);
} // AbstractQueuedSynchronizer.acquire(int)
public final void acquire(int arg) {
if (!tryAcquire(arg) &&
acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
selfInterrupt();
} /**
* ReentrantReadWriteLock.Sync.tryAcquire(int)
* 可以获取写锁的两种情况:
* 1.没有线程占用该锁(读锁和写锁都没有被占用)
* 2.当前线程已经拿到过该写锁,重入
*/
protected final boolean tryAcquire(int acquires) {
Thread current = Thread.currentThread();
int c = getState();
int w = exclusiveCount(c); // 写锁
if (c != 0) { // 有锁
if (w == 0 || current != getExclusiveOwnerThread()) // 有锁且没有写锁(即有读锁) || 其他线程占用了写锁
return false;
if (w + exclusiveCount(acquires) > MAX_COUNT) // 重入锁上限 2^16-1
throw new Error("Maximum lock count exceeded");
setState(c + acquires);
return true;
}
// 没有线程占用该锁,直接获取锁
if (writerShouldBlock() || // 如果是公平锁需要排队
!compareAndSetState(c, c + acquires))
return false;
setExclusiveOwnerThread(current);
return true;
}

写锁释放:

    // ReentrantReadWriteLock.WriteLock.unlock()
public void unlock() {
sync.release(1);
} // AbstractQueuedSynchronizer.release(int)
public final boolean release(int arg) {
if (tryRelease(arg)) {
Node h = head;
if (h != null && h.waitStatus != 0)
unparkSuccessor(h);
return true;
}
return false;
} /**
* ReentrantReadWriteLock.Sync.tryRelease(int)
* 释放写锁:维护state和exclusiveOwnerThread
*
*/
protected final boolean tryRelease(int releases) {
if (!isHeldExclusively())
throw new IllegalMonitorStateException();
int nextc = getState() - releases;
boolean free = exclusiveCount(nextc) == 0;
if (free)
setExclusiveOwnerThread(null);
setState(nextc);
return free;
}

读锁

    abstract static class Sync extends AbstractQueuedSynchronizer {
// 这个嵌套类的实例用来记录每个线程持有的读锁数量(读锁重入)
static final class HoldCounter {
int count = 0; // 持有的读锁数
final long tid = getThreadId(Thread.currentThread()); // 线程 id
} static final class ThreadLocalHoldCounter extends ThreadLocal<HoldCounter> {
public HoldCounter initialValue() {
return new HoldCounter();
}
} /**
* 组合使用上面两个类,用一个 ThreadLocal 来记录线程持有的读锁数量
*/
private transient ThreadLocalHoldCounter readHolds; /**
* 用于缓存,记录最后一个获取读锁的线程的读锁重入次数
* 不管哪个线程获取到读锁后,就把这个值占为已用,这样就不用到 ThreadLocal 中查询 map 了
* 通常读锁的获取很快就会伴随着释放,在 获取->释放 读锁这段时间,如果没有其他线程获取读锁的话,此缓存就能帮助提高性能
*/
private transient HoldCounter cachedHoldCounter; /**
* 第一个获取读锁的线程(并且其未释放读锁),以及它持有的读锁数量
* 提高性能用
*/
private transient Thread firstReader = null;
private transient int firstReaderHoldCount; }

读锁获取:

// ReentrantReadWriteLock.ReadLock.lock()
public void lock() {
sync.acquireShared(1);
} // AbstractQueuedSynchronizer.acquireShared(int)
public final void acquireShared(int arg) {
if (tryAcquireShared(arg) < 0)
doAcquireShared(arg);
} /**
* ReentrantReadWriteLock.Sync.tryAcquireShared(int)
* 可以获取读锁情况:
* 1.没有线程占用该锁
* 2.只有读锁
* 3.有写锁,写锁被当前线程占用,锁降级
* 三种情况 - 只要没有其他线程占用写锁就可以获取读锁
*/
protected final int tryAcquireShared(int unused) {
Thread current = Thread.currentThread();
int c = getState();
if (exclusiveCount(c) != 0 &&
getExclusiveOwnerThread() != current) // 其他线程占用写锁
return -1;
int r = sharedCount(c); // 读锁
if (!readerShouldBlock() && r < MAX_COUNT && compareAndSetState(c, c + SHARED_UNIT)) { // 进入此if,表示可以拿到读锁了
if (r == 0) { // 将"第一个"获取读锁的线程记录在firstReader属性中
firstReader = current;
firstReaderHoldCount = 1;
} else if (firstReader == current) {
firstReaderHoldCount++;
} else { // 1.当前线程及对应读锁次数存入cachedHoldCounter 2.当前线程及对应读锁次数存入readHolds
HoldCounter rh = cachedHoldCounter;
if (rh == null || rh.tid != getThreadId(current))
cachedHoldCounter = rh = readHolds.get();// readHolds中取当先线程的ThreadLocal(没有就创建一个)
else if (rh.count == 0)
readHolds.set(rh);
rh.count++;
}
return 1;
}
return fullTryAcquireShared(current);// 公平锁排队非公平锁下一个是写锁/读锁重入次数上限/CAS失败 重新拿读锁
} /**
* ReentrantReadWriteLock.Sync.fullTryAcquireShared(Thread)
*/
final int fullTryAcquireShared(Thread current) {
HoldCounter rh = null;
for (;;) { // 循环CAS拿锁
int c = getState();
if (exclusiveCount(c) != 0) {
if (getExclusiveOwnerThread() != current) // 其他线程占用写锁
return -1;
} else if (readerShouldBlock()) { // 处理读锁重入,将cachedHoldCounter设置为当前线程
if (firstReader == current) {
// assert firstReaderHoldCount > 0;
} else {
if (rh == null) {
rh = cachedHoldCounter;
if (rh == null || rh.tid != getThreadId(current)) {
rh = readHolds.get();
if (rh.count == 0)
readHolds.remove();
}
}
if (rh.count == 0) // 不是重入,返回-1
return -1;
}
}
if (sharedCount(c) == MAX_COUNT)
throw new Error("Maximum lock count exceeded");
if (compareAndSetState(c, c + SHARED_UNIT)) { // 正常拿读锁
if (sharedCount(c) == 0) {
firstReader = current;
firstReaderHoldCount = 1;
} else if (firstReader == current) {
firstReaderHoldCount++;
} else {
if (rh == null)
rh = cachedHoldCounter;
if (rh == null || rh.tid != getThreadId(current))
rh = readHolds.get();
else if (rh.count == 0)
readHolds.set(rh);
rh.count++;
cachedHoldCounter = rh; // cache for release
}
return 1;
}
}
}

锁降级:

持有写锁的线程,去获取读锁的过程称为锁降级

读锁释放:

    // ReentrantReadWriteLock.ReadLock.unlock()
public void unlock() {
sync.releaseShared(1);
} // AbstractQueuedSynchronizer.releaseShared(int)
public final boolean releaseShared(int arg) {
if (tryReleaseShared(arg)) {
doReleaseShared();
return true;
}
return false;
} /**
* ReentrantReadWriteLock.Sync.tryReleaseShared(int)
* 维护readHolds state
*/
protected final boolean tryReleaseShared(int unused) {
Thread current = Thread.currentThread();
if (firstReader == current) { // 第一个获取读锁的线程
if (firstReaderHoldCount == 1)
firstReader = null;
else
firstReaderHoldCount--;
} else { // readHolds中次数-1
HoldCounter rh = cachedHoldCounter;
if (rh == null || rh.tid != getThreadId(current))
rh = readHolds.get();
int count = rh.count;
if (count <= 1) {
readHolds.remove();
if (count <= 0)
throw unmatchedUnlockException();
}
--rh.count;
}
for (;;) { // state
int c = getState();
int nextc = c - SHARED_UNIT;
if (compareAndSetState(c, nextc))
// Releasing the read lock has no effect on readers,
// but it may allow waiting writers to proceed if
// both read and write locks are now free.
return nextc == 0;
}
}

参考资料 / 相关推荐

Java 读写锁 ReentrantReadWriteLock 源码分析

【死磕Java并发】—–J.U.C之读写锁:ReentrantReadWriteLock

Java并发(十):读写锁ReentrantReadWriteLock的更多相关文章

  1. java并发编程-读写锁

    最近项目中需要用到读写锁 读写锁适用于读操作多,写操作少的场景,假设你的程序中涉及到对一些共享资源的读和写操作,且写操作没有读操作那么频繁.在没有写操作的时候,两个线程同时读一个资源没有任何问题,所以 ...

  2. java并发之读写锁ReentrantReadWriteLock的使用

    Lock比传统线程模型中的synchronized方式更加面向对象,与生活中的锁类似,锁本身也应该是一个对象.两个线程执行的代码片段要实现同步互斥的效果,它们必须用同一个Lock对象. 读写锁:分为读 ...

  3. java并发:读写锁ReadWriteLock

    在没有写操作的时候,两个线程同时读一个资源没有任何问题,允许多个线程同时读取共享资源. 但是如果有一个线程想去写这些共享资源,就不应该再有其它线程对该资源进行读或写. 简单来说,多个线程同时操作同一资 ...

  4. JAVA 并发编程-读写锁之模拟缓存系统(十一)

    在多线程中,为了提高效率有些共享资源同意同一时候进行多个读的操作,但仅仅同意一个写的操作,比方一个文件,仅仅要其内容不变能够让多个线程同一时候读,不必做排他的锁定,排他的锁定仅仅有在写的时候须要,以保 ...

  5. Java并发指南10:Java 读写锁 ReentrantReadWriteLock 源码分析

    Java 读写锁 ReentrantReadWriteLock 源码分析 转自:https://www.javadoop.com/post/reentrant-read-write-lock#toc5 ...

  6. java 可重入读写锁 ReentrantReadWriteLock 详解

    详见:http://blog.yemou.net/article/query/info/tytfjhfascvhzxcyt206 读写锁 ReadWriteLock读写锁维护了一对相关的锁,一个用于只 ...

  7. 轻松掌握java读写锁(ReentrantReadWriteLock)的实现原理

    转载:https://blog.csdn.net/yanyan19880509/article/details/52435135 前言 前面介绍了java中排它锁,共享锁的底层实现机制,本篇再进一步, ...

  8. [图解Java]读写锁ReentrantReadWriteLock

    图解ReentrantReadWriteLock 如果之前使用过读写锁, 那么可以直接看本篇文章. 如果之前未使用过, 那么请配合我的另一篇文章一起看:[源码分析]读写锁ReentrantReadWr ...

  9. 读写锁ReentrantReadWriteLock:读读共享,读写互斥,写写互斥

    介绍 DK1.5之后,提供了读写锁ReentrantReadWriteLock,读写锁维护了一对锁:一个读锁,一个写锁.通过分离读锁和写锁,使得并发性相比一般的排他锁有了很大提升.在读多写少的情况下, ...

随机推荐

  1. MUI上传文件的方法

    <!doctype html> <html> <head> <meta charset="UTF-8"> <title> ...

  2. ueditor和thinkphp框架整合修改版

    基于tp官网上的一篇文章修改的  因为tp中所有目录其实都是性对于入口文件的 在原来的基础上略做修改后 已经做到 无论项目放在www下的任何位置 图片在编辑器中回填后都能正常显示! http://fi ...

  3. angular 最大字数限制

    js可以通过onkeyup onkeydown判断当前节点字数. angular可以通过监听的方式: $scope.input = {//初始化,避免ng-model绑定取不到值 MaxBT:'', ...

  4. Math类的数学计算功能

    //Math类的数学计算功能 public class MathTest { public static void main(String[] args) { /*----------下面是三角运算- ...

  5. Percona XtraDB Cluster(PXC) Mysql 集群

    Percona XtraDB Cluster(PXC)   ---原理介绍篇         目录 一.简介 1 二.优缺点 2 三.区别/局限性 3 四. PXC复制原理 4 五. 服务解释 5   ...

  6. Binary Tree Zigzag Level Order Traversal——关于广度优先的经典面试题

    Given a binary tree, return the zigzag level order traversal of its nodes' values. (ie, from left to ...

  7. linux下c图形化编程之gtk+2.0简单学习

    在linux下想做一个图形化的界面,然后自己选择使用gtk+2.0来进行编辑,我的电脑已经安装过gtk+2.0了,所以就在网上找了一个安装方法,结果未测试,大家有安装问题可以说下,一起探讨下. 1.安 ...

  8. break、continue多层循环处理

    使用break xxx跳出多层循环的代码如下: for(String s: arr){ labelA: for(String ss: arr) { for(String sss: arr) { Sys ...

  9. Selenium--testNG下载地址

    TestNG - http://beust.com/eclipse   http://testng.org/doc/eclipse.html http://testng.org/doc/seleniu ...

  10. bzoj 1131 简单树形dp

    思路:随便想想就能想出来啦把...  卡了我一个vector... #include<bits/stdc++.h> #define LL long long #define fi firs ...