Spark 源码解析 : DAGScheduler中的DAG划分与提交
一、Spark 运行架构

def submitJob[T, U](rdd: RDD[T],func: (TaskContext, Iterator[T]) => U,partitions: Seq[Int],callSite: CallSite,resultHandler: (Int, U) => Unit,properties: Properties): JobWaiter[U] = {// Check to make sure we are not launching a task on a partition that does not exist.val maxPartitions = rdd.partitions.lengthpartitions.find(p => p >= maxPartitions || p < 0).foreach { p =>throw new IllegalArgumentException("Attempting to access a non-existent partition: " + p + ". " +"Total number of partitions: " + maxPartitions)}val jobId = nextJobId.getAndIncrement()if (partitions.size == 0) {// Return immediately if the job is running 0 tasksreturn new JobWaiter[U](this, jobId, 0, resultHandler)}assert(partitions.size > 0)val func2 = func.asInstanceOf[(TaskContext, Iterator[_]) => _]val waiter = new JobWaiter(this, jobId, partitions.size, resultHandler)//给eventProcessLoop发送JobSubmitted消息eventProcessLoop.post(JobSubmitted(jobId, rdd, func2, partitions.toArray, callSite, waiter,SerializationUtils.clone(properties)))waiter}
private[scheduler] val eventProcessLoop = new DAGSchedulerEventProcessLoop(this)
private def doOnReceive(event: DAGSchedulerEvent): Unit = event match {//Job提交
case JobSubmitted(jobId, rdd, func, partitions, callSite, listener, properties) =>dagScheduler.handleJobSubmitted(jobId, rdd, func, partitions, callSite, listener, properties)case MapStageSubmitted(jobId, dependency, callSite, listener, properties) =>dagScheduler.handleMapStageSubmitted(jobId, dependency, callSite, listener, properties)case StageCancelled(stageId) =>dagScheduler.handleStageCancellation(stageId)case JobCancelled(jobId) =>dagScheduler.handleJobCancellation(jobId)case JobGroupCancelled(groupId) =>dagScheduler.handleJobGroupCancelled(groupId)case AllJobsCancelled =>dagScheduler.doCancelAllJobs()case ExecutorAdded(execId, host) =>dagScheduler.handleExecutorAdded(execId, host)case ExecutorLost(execId) =>dagScheduler.handleExecutorLost(execId, fetchFailed = false)case BeginEvent(task, taskInfo) =>dagScheduler.handleBeginEvent(task, taskInfo)case GettingResultEvent(taskInfo) =>dagScheduler.handleGetTaskResult(taskInfo)case completion: CompletionEvent =>dagScheduler.handleTaskCompletion(completion)case TaskSetFailed(taskSet, reason, exception) =>dagScheduler.handleTaskSetFailed(taskSet, reason, exception)case ResubmitFailedStages =>dagScheduler.resubmitFailedStages()}
try {//创建新stage可能出现异常,比如job运行依赖hdfs文文件被删除finalStage = newResultStage(finalRDD, func, partitions, jobId, callSite)} catch {case e: Exception =>logWarning("Creating new stage failed due to exception - job: " + jobId, e)listener.jobFailed(e)return}

private def getMissingParentStages(stage: Stage): List[Stage] = {val missing = new HashSet[Stage] //存储需要返回的父Stageval visited = new HashSet[RDD[_]] //存储访问过的RDD//自己建立栈,以免函数的递归调用导致val waitingForVisit = new Stack[RDD[_]]def visit(rdd: RDD[_]) {if (!visited(rdd)) {visited += rddval rddHasUncachedPartitions = getCacheLocs(rdd).contains(Nil)if (rddHasUncachedPartitions) {for (dep <- rdd.dependencies) {dep match {case shufDep: ShuffleDependency[_, _, _] =>val mapStage = getShuffleMapStage(shufDep, stage.firstJobId)if (!mapStage.isAvailable) {missing += mapStage //遇到宽依赖,加入父stage}case narrowDep: NarrowDependency[_] =>waitingForVisit.push(narrowDep.rdd) //窄依赖入栈,}}}}}- //回溯的起始RDD入栈
waitingForVisit.push(stage.rdd)while (waitingForVisit.nonEmpty) {visit(waitingForVisit.pop())}missing.toList}
private def newOrUsedShuffleStage(shuffleDep: ShuffleDependency[_, _, _],firstJobId: Int): ShuffleMapStage = {val rdd = shuffleDep.rddval numTasks = rdd.partitions.lengthval stage = newShuffleMapStage(rdd, numTasks, shuffleDep, firstJobId, rdd.creationSite)if (mapOutputTracker.containsShuffle(shuffleDep.shuffleId)) {//Stage已经被计算过,从MapOutputTracker中获取计算结果val serLocs = mapOutputTracker.getSerializedMapOutputStatuses(shuffleDep.shuffleId)val locs = MapOutputTracker.deserializeMapStatuses(serLocs)(0 until locs.length).foreach { i =>if (locs(i) ne null) {// locs(i) will be null if missingstage.addOutputLoc(i, locs(i))}}} else {// Kind of ugly: need to register RDDs with the cache and map output tracker here// since we can't do it in the RDD constructor because # of partitions is unknownlogInfo("Registering RDD " + rdd.id + " (" + rdd.getCreationSite + ")")mapOutputTracker.registerShuffle(shuffleDep.shuffleId, rdd.partitions.length)}stage}
/** Submits stage, but first recursively submits any missing parents. */private def submitStage(stage: Stage) {val jobId = activeJobForStage(stage)if (jobId.isDefined) {logDebug("submitStage(" + stage + ")")if (!waitingStages(stage) && !runningStages(stage) && !failedStages(stage)) {val missing = getMissingParentStages(stage).sortBy(_.id)logDebug("missing: " + missing)if (missing.isEmpty) {logInfo("Submitting " + stage + " (" + stage.rdd + "), which has no missing parents")//如果没有父stage,则提交当前stagesubmitMissingTasks(stage, jobId.get)} else {for (parent <- missing) {//如果有父stage,则递归提交父stagesubmitStage(parent)}waitingStages += stage}}} else {abortStage(stage, "No active job for stage " + stage.id, None)}}
Spark 源码解析 : DAGScheduler中的DAG划分与提交的更多相关文章
- Spark 源码解析:TaskScheduler的任务提交和task最佳位置算法
上篇文章< Spark 源码解析 : DAGScheduler中的DAG划分与提交 >介绍了DAGScheduler的Stage划分算法. 本文继续分析Stage被封装成TaskSet, ...
- Spark源码分析 – DAGScheduler
DAGScheduler的架构其实非常简单, 1. eventQueue, 所有需要DAGScheduler处理的事情都需要往eventQueue中发送event 2. eventLoop Threa ...
- spark 源码分析之十九 -- DAG的生成和Stage的划分
上篇文章 spark 源码分析之十八 -- Spark存储体系剖析 重点剖析了 Spark的存储体系.从本篇文章开始,剖析Spark作业的调度和计算体系. 在说DAG之前,先简单说一下RDD. 对RD ...
- Scala实战高手****第4课:零基础彻底实战Scala控制结构及Spark源码解析
1.环境搭建 基础环境配置 jdk+idea+maven+scala2.11.以上工具安装配置此处不再赘述. 2.源码导入 官网下载spark源码后解压到合适的项目目录下,打开idea,File-&g ...
- Spark源码在Eclipse中部署/编译/运行
(1)下载Spark源码 到官方网站下载:Openfire.Spark.Smack,其中Spark只能使用SVN下载,源码的文件夹分别对应Openfire.Spark和Smack. 直接下载Openf ...
- 源码解析.Net中IConfiguration配置的实现
前言 关于IConfituration的使用,我觉得大部分人都已经比较熟悉了,如果不熟悉的可以看这里.因为本篇不准备讲IConfiguration都是怎么使用的,但是在源码部分的解读,网上资源相对少一 ...
- 源码解析.Net中DependencyInjection的实现
前言 笔者的这篇文章和上篇文章思路一样,不注重依赖注入的使用方法,更加注重源码的实现,我尽量的表达清楚内容,让读者能够真正的学到东西.如果有不太清楚依赖注入是什么或怎么在.Net项目中使用的话,请点击 ...
- 源码解析.Net中Middleware的实现
前言 本篇继续之前的思路,不注重用法,如果还不知道有哪些用法的小伙伴,可以点击这里,微软文档说的很详细,在阅读本篇文章前,还是希望你对中间件有大致的了解,这样你读起来可能更加能够意会到意思.废话不多说 ...
- 源码解析.Net中Host主机的构建过程
前言 本篇文章着重讲一下在.Net中Host主机的构建过程,依旧延续之前文章的思路,着重讲解其源码,如果有不知道有哪些用法的同学可以点击这里,废话不多说,咱们直接进入正题 Host构建过程 下图是我自 ...
随机推荐
- Qt ------ 设置透明度
void setWindowOpacity(qreal level); //设置所有控件的不透明度 setAttribute(Qt::WA_TranslucentBackground); // ...
- WPF技术点
常用Path路径 正三角形(左):<Path Data="M40,0 L0,30 40,60 z" Stretch="Uniform"/> 正三角形 ...
- 使用asp.net改变图片颜色
最近奇葩经理提出了奇葩的需求,要能在网站上改变图片的颜色,比如灰色的变成彩色,彩色的变成灰色,尼玛楼主的感受你们不懂!于是有了下面的代码... 用法:调用update_pixelColor方法并传参数 ...
- 接口自动化测试框架HttpRunner
接口自动化测试框架 https://github.com/HttpRunner/HttpRunner http://debugtalk.com/post/ApiTestEngine-api-test- ...
- bzoj3524/2223 [Poi2014]Couriers
传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=3524 http://www.lydsy.com/JudgeOnline/problem.ph ...
- 【POJ】3070 Fibonacci
[算法]矩阵快速幂 [题解] 根据f[n]=f[n-1]+f[n-2],可以构造递推矩阵: $$\begin{vmatrix}1 & 1\\ 1 & 0\end{vmatrix} \t ...
- 一般处理程序、ASP.NET核心知识(5)
初窥 1.新建一个一般处理程序 新建一个一般处理程序 2.看看里头的代码 public class MyHandler : IHttpHandler { public void ProcessRequ ...
- 2017 ACM暑期多校联合训练 - Team 3 1008 HDU 6063 RXD and math (莫比乌斯函数)
题目链接 Problem Description RXD is a good mathematician. One day he wants to calculate: ∑i=1nkμ2(i)×⌊nk ...
- Cookie、Session 和 自定义分页
cookie Cookie的由来 大家都知道HTTP协议是无状态的. 无状态的意思是每次请求都是独立的,它的执行情况和结果与前面的请求和之后的请求都无直接关系,它不会受前面的请求响应情况直接影响,也不 ...
- BZOJ 3958 Mummy Madness
Problem BZOJ Solution 算法:二分+扫描线 快要2019年了,就瞎写一篇博客来凑数,不然感觉太荒凉了-- 答案是可二分的,那么二分的依据是什么呢?不妨设当前二分的答案为\(mid\ ...