IEEEXtreme 10.0 - Always Be In Control
这是 meelo 原创的 IEEEXtreme极限编程大赛题解
Xtreme 10.0 - Always Be In Control
题目来源 第10届IEEE极限编程大赛
https://www.hackerrank.com/contests/ieeextreme-challenges/challenges/always-be-in-control
Engineers use a technique called "statistical process control" to manage and improve engineering processes. For example, suppose a manufacturing process is producing widgets of some sort and the diameter of a widget, measured in microns, is important to the ability to use that widget in a later assembly. Many things can affect the diameter of a widget (humidity, temperature, quality of raw materials, etc.), so there is going to be some variation in diameter from one set of widgets to the next. Statistical process control would sample the diameter of a widget over time to make sure that the variation is consistent.
One of the core techniques of statistical process control is a control chart, which is used to monitor some aspect of the process over time to see if the process is behaving consistently. A control chart plots the sampled statistic over time and includes upper and lower control limits that describe the variation in the data. Those control limits are called 3-sigma limits as they represent about three standard deviations away from the mean of the data. Here is an example control chart:

A process is considered to be "in control" with respect to a given variable if its variation is predictable. When analyzing a control chart, the process is out of control if any of the following occur:
A single point falls outside the 3-sigma control limits.
At least two out of three successive values fall on the same side of, and more than two sigma units away from, the center line.
At least four out of five successive values fall on the same side of, and more than one sigma unit away from, the center line.
At least eight successive values fall on the same side of the center line.
There are many ways to build control charts and selecting the right one depends on the type of data you have and the question you are trying to answer. For this problem, you are going to build a variation of an Xbar chart, in which we group the data into subgroups of n sequential values. For each subgroup, we compute ri, the range of the values, and Xi, the average of the values. (The range is the maximum value minus the minimum value in the subgroup). The control chart will be a plot of the raw data values (in order). The upper control limit (UCL), lower control limit (LCL), and the center line (CL) are computed as follows:
UCLX = Xave + A2 Rave
LCLX = Xave - A2 Rave
CLX = Xave
Where Xave is the average of the Xi values, Rave is the average of the range values, and A2 is a constant that depends on the size of the groups we created, as shown in the table below.
Size of group (n) A2
2 1.880
3 1.023
4 0.729
5 0.577
6 0.483
7 0.419
8 0.373
9 0.337
10 0.308
Input Format
The first line of the input will be an integer between 1 and 20, inclusive, that is the number of test cases in the input.
Each test case will be specified by one line of space separated integers. The first will be x, 1 ≤ x ≤ 10,000, the number of data points in the test case. The second will be n, 2 ≤ n ≤ 10, the number of elements in a subgroup. That will be followed by x space separated integers for the test case containing the sequential data gathered from an engineering process. These will be integers with values between -10,000 and 10,000, inclusive.
The last subgroup may be incomplete (i.e. it may not contain n elements). The last subgroup should be treated like a normal subgroup, even if it is incomplete. For example, let's say the subgroup had the entries <1,6,2>. If n = 10, this subgroup is incomplete. The range would be 5 (6 - 1 = 5), and the average would be 3 ((1 + 6 + 2)/3 = 3). If there is only 1 item in this subgroup, the average would be equal to the number, and the range would be 0.
Output Format
You are to calculate the three sigma control limits and then test the data to see if it is in control or out of control. For each test case, output, on a line by itself, either "In Control" or "Out of Control" as appropriate.
Note that the output is case-sensitive.
Sample Input
1
25 5 -13 -18 4 15 -3 10 9 -1 17 -1 -2 20 -20 10 -4 2 2 -5 -1 -14 4 -9 13 4 12
Sample Output
Out of Control
Explanation
The table below shows the necessary calculations for these 25 data points, given that there are 5 items in a subgroup.
DATA SUBGROUP AVERAGE SUBGROUP RANGE
-13
-18
4
15
-3 -3 33
10
9
-1
17
-1 6.8 18
-2
20
-20
10
-4 0.8 40
2
2
-5
-1
-14 -3.2 16
4
-9
13
4
12 4.8 22
GRAND AVERAGE 1.24 25.8
UCL 16.1266
CENTER LINE 1.24
LCL -13.6466
SIGMA 4.9622
For these calculations, A2 is 0.577 because we grouped five items in a group. As shown in the table, Xave is 1.24, and Rave is 25.8. Since the control limits are "3-sigma" lines, sigma is one third of the distance between the center line and the upper control limit.
This process would be considered out of control because there are a number of points, e.g. -18 and 20, that are more than three sigma from the center line. Note that in a real world analysis, you would need much more data to draw this conclusion.
题目解析
非常简单的一道题。根据题目的规则计算就行了。
完全不用考虑效率的问题,怎么方便怎么写。
程序
C++
#include <cmath>
#include <cstdio>
#include <vector>
#include <iostream>
#include <algorithm>
using namespace std; const double a2[] = {,,1.880,1.023,0.729,0.577,0.483,0.419,0.373,0.337,0.308}; // x/y rounded up
int roundedUp(int x, int y) {
return (x+y-) / y;
} bool inControl(vector<int> &p, int group_size) {
double center = , range = ;
int num_group = roundedUp(p.size(), group_size);
for(int i=; i<num_group; i++) {
double mean = , min = , max = -;
int g;
for(g=; g<group_size; g++) {
int index = i * group_size + g;
if(index >= p.size()) break; mean += p[index];
if(p[index] < min) min = p[index];
if(p[index] > max) max = p[index];
}
center += mean / g;
range += (max - min);
}
center /= num_group;
range /= num_group; double UC3 = center + a2[group_size] * range;
double UC2 = center + a2[group_size] * range * / ;
double UC1 = center + a2[group_size] * range / ;
double LC1 = center - a2[group_size] * range / ;
double LC2 = center - a2[group_size] * range * / ;
double LC3 = center - a2[group_size] * range; bool inControl = true;
// A single point falls outside the 3-sigma control limits.
for(int i=; i<p.size(); i++) {
if(p[i] > UC3 || p[i] < LC3) {
inControl = false;
}
}
// At least two out of three successive values fall on the same side of, and more than two sigma units away from, the center line.
for(int i=; i<p.size()-; i++) {
int countUp = , countDown = ;
for(int j=; j<; j++) {
if(p[i+j] > UC2) countUp++;
if(p[i+j] < LC2) countDown++;
}
if(countUp >= || countDown >= ) {
inControl = false;
}
}
// At least four out of five successive values fall on the same side of, and more than one sigma unit away from, the center line.
for(int i=; i<p.size()-; i++) {
int countUp = , countDown = ;
for(int j=; j<; j++) {
if(p[i+j] > UC1) countUp++;
if(p[i+j] < LC1) countDown++;
}
if(countUp >= || countDown >= ) {
inControl = false;
}
}
// At least eight successive values fall on the same side of the center line.
for(int i=; i<p.size()-; i++) {
int countUp = , countDown = ;
for(int j=; j<; j++) {
if(p[i+j] > center) countUp++;
if(p[i+j] < center) countDown++;
}
if(countUp == || countDown == ) {
inControl = false;
}
} return inControl;
} int main() {
/* Enter your code here. Read input from STDIN. Print output to STDOUT */
int T;
cin >> T;
for(int t=; t<T; t++) {
int N, group_size;
cin >> N >> group_size; vector<int> process(N);
for(int n=; n<N; n++) {
cin >> process[n];
} if(inControl(process, group_size)) {
cout << "In Control" << endl;
}
else {
cout << "Out of Control" << endl;
}
} return ;
}
博客中的文章均为 meelo 原创,请务必以链接形式注明 本文地址
IEEEXtreme 10.0 - Always Be In Control的更多相关文章
- IEEEXtreme 10.0 - Inti Sets
这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Inti Sets 题目来源 第10届IEEE极限编程大赛 https://www.hackerrank.c ...
- IEEEXtreme 10.0 - Painter's Dilemma
这是 meelo 原创的 IEEEXtreme极限编程比赛题解 Xtreme 10.0 - Painter's Dilemma 题目来源 第10届IEEE极限编程大赛 https://www.hack ...
- IEEEXtreme 10.0 - Ellipse Art
这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Ellipse Art 题目来源 第10届IEEE极限编程大赛 https://www.hackerrank ...
- IEEEXtreme 10.0 - Counting Molecules
这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Counting Molecules 题目来源 第10届IEEE极限编程大赛 https://www.hac ...
- IEEEXtreme 10.0 - Checkers Challenge
这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Checkers Challenge 题目来源 第10届IEEE极限编程大赛 https://www.hac ...
- IEEEXtreme 10.0 - Game of Stones
这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Game of Stones 题目来源 第10届IEEE极限编程大赛 https://www.hackerr ...
- IEEEXtreme 10.0 - Playing 20 Questions with an Unreliable Friend
这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Playing 20 Questions with an Unreliable Friend 题目来源 第1 ...
- IEEEXtreme 10.0 - Full Adder
这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Full Adder 题目来源 第10届IEEE极限编程大赛 https://www.hackerrank. ...
- IEEEXtreme 10.0 - N-Palindromes
这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - N-Palindromes 题目来源 第10届IEEE极限编程大赛 https://www.hackerra ...
随机推荐
- 学习 opencv---(11)OpenC 边缘检测:Canny算子,Sobel算子,Laplace算子,Scharr滤波器
本篇文章中,我们将一起学习OpenCV中边缘检测的各种算子和滤波器——Canny算子,Sobel算子,Laplace算子以及Scharr滤波器.文章中包含了五个浅墨为大家准备的详细注释的博文配套源代码 ...
- 「Python-Django」Django中使用数据库的 9 个小技巧
Django 中使用数据库的 9 个小技巧. 1. 过滤器聚合 在 Django 2.0 之前,如果你想得到“用户总数”.“活跃用户总数”等信息时,你不得不使用条件表达式. Django 2.0 中, ...
- 关于HttpURLConnection/HttpsURLConnection请求出现了io.filenotfoundexception:url的解决方法
//从输入流读取返回内容InputStream is = null;int status = connection.getResponseCode();if(status>= HttpStatu ...
- [DeeplearningAI笔记]序列模型3.2有条件的语言模型与贪心搜索的不可行性
5.3序列模型与注意力机制 觉得有用的话,欢迎一起讨论相互学习~Follow Me 3.2选择最可能的句子 Picking the most likely sentence condition lan ...
- cc1: warnings being treated as errors解决办法
安装GDB时出现cc1: warnings being treated as errors Edit the Makefile and delete this line:WERROR_CFLAGS = ...
- Dubbo 的应用
--- 用于大规模服务化,通过在消费方获取服务提供方的地址列表,实现负载均衡,减轻服务器压力. 最简单调用图 节点角色说明: l Provider: 暴露服务的服务提供方. l Consumer ...
- HTML入门(三)后台系统显示页面_框架标签
<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...
- JVM学习二:JVM之类加载器之加载分析
前面一遍,我们对类的加载有了一个整体的认识,而这一节我们细节分析一下类加载器的第一步,即:加载. 一.概念 类的加载指的是将类的.class文件中的二进制数据读入到内存中,将其放在运行时数据区的方法区 ...
- 洛谷 Transformations 方块转换
Description 一块N x N(1<=N<=10)正方形的黑白瓦片的图案要被转换成新的正方形图案.写一个程序来找出将原始图案按照以下列转换方法转换成新图案的最小方式: 1:转90度 ...
- Android Service使用简单介绍
作为一个android初学者,经常对service的使用感到困惑.今天结合Google API 对Service这四大组件之一,进行简单使用说明. 希望对和我一样的初学者有帮助,如有不对的地方,也希望 ...