数学:A^B的约数(因子)之和对MOD取模
POJ1845
首先把A写成唯一分解定理的形式
分解时让A对所有质数从小到大取模就好了
然后就有:A = p1^k1 * p2^k2 * p3^k3 *...* pn^kn
然后有: A^B = p1^(k1*B) * p2^(k2*B) *...* pn^(kn*B);
约数和公式:
对于已经分解的整数A=(p1^k1)*(p2^k2)*(p3^k3)*....*(pn^kn)
有A的所有因子之和为
S = (1+p1+p1^2+p1^3+...p1^k1) * (1+p2+p2^2+p2^3+….p2^k2) * (1+p3+ p3^3+…+ p3^k3) * .... * (1+pn+pn^2+pn^3+...pn^kn)
那么A^B就可以是
sum = [1+p1+p1^2+...+p1^(a1*B)] * [1+p2+p2^2+...+p2^(a2*B)] *...* [1+pn+pn^2+...+pn^(an*B)].
求等比数列1+pi+pi^2+pi^3+...+pi^n
()若n为奇数,一共有偶数项,则:
+ p + p^ + p^ +...+ p^n = (+p^(n/+)) + p * (+p^(n/+)) +...+ p^(n/) * (+p^(n/+))
= ( + p + p^ +...+ p^(n/)) * ( + p^(n/+)) 上式红色加粗的前半部分恰好就是原式的一半,那么只需要不断递归二分求和就可以了,后半部分为幂次式,将在下面第4点讲述计算方法。 ()若n为偶数,一共有奇数项,则:
+ p + p^ + p^ +...+ p^n = (+p^(n/+)) + p * (+p^(n/+)) +...+ p^(n/-) * (+p^(n/+)) + p^(n/)
= ( + p + p^ +...+ p^(n/-)) * (+p^(n/+)) + p^(n/); 上式红色加粗的前半部分恰好就是原式的一半,依然递归求解
p^n直接快速幂就可以了
#include<cstdio>
#include<cstring>
const int mod=;
const int maxn=;
int A,B;
int fatcnt;
int prime[maxn];
long long factor[][];
void get_prime()
{
memset(prime,,sizeof(prime));
for(int i=;i<=maxn;i++)
{
if(!prime[i]) prime[++prime[]]=i;
for(int j=;j<=prime[]&&prime[j]<=maxn/i;j++)
{
prime[prime[j]*i]=;
if(i%prime[j]==) break;
}
}
}
int get_factors(long long x)
{
fatcnt=;
long long tmp=x;
for(int i=;prime[i]<=tmp/prime[i];i++)
{
factor[fatcnt][]=;
if(tmp%prime[i]==)
{
factor[fatcnt][]=prime[i];
while(tmp%prime[i]==)
{
factor[fatcnt][]++;
tmp/=prime[i];
}
fatcnt++;
}
}
if(tmp!=)
{
factor[fatcnt][]=tmp;
factor[fatcnt++][]=;
}
return fatcnt;
}
long long pow_mod(long long a,long long n)
{
long long res=;
long long tmp=a%mod;
while(n)
{
if(n&)
{
res*=tmp;
res%=mod;
}
n>>=;
tmp*=tmp;
tmp%=mod;
}
return res;
}
long long sum(long long p,long long n)
{
//1+p+p^2+````+p^n
if(p==) return ;
if(n==) return ;
if(n&)
return ((+pow_mod(p,n/+))%mod*sum(p,n/)%mod)%mod;
else
return ((+pow_mod(p,n/+))%mod*sum(p,n/-)+pow_mod(p,n/)%mod)%mod;
}
int main()
{
get_prime();
while(scanf("%d%d",&A,&B)==)
{
get_factors(A);
long long ans=;
for(int i=;i<fatcnt;i++)
{
ans*=(sum(factor[i][],B*factor[i][])%mod);
ans%=mod;
}
printf("%I64d\n",ans);
}
return ;
}
数学:A^B的约数(因子)之和对MOD取模的更多相关文章
- 求a^b的约数对mod取模
+; int prime[maxn]; void marktable(int n){ memset(prime,,sizeof(prime)); ;i<=n;i++){ ]]=i; ;j< ...
- 代码实现:一个数如果恰好等于它的因子之和,这个数就称为"完数"。例如6=1+2+3.第二个完全数是28, //它有约数1、2、4、7、14、28,除去它本身28外,其余5个数相加, //编程找出1000以内的所有完数。
import java.util.ArrayList; import java.util.List; //一个数如果恰好等于它的因子之和,这个数就称为"完数".例如6=1+2+3. ...
- python基础练习题(题目 一个数如果恰好等于它的因子之和,这个数就称为"完数"。例如6=1+2+3.编程找出1000以内的所有完数)
day12 --------------------------------------------------------------- 实例019:完数 题目 一个数如果恰好等于它的因子之和,这个 ...
- POJ 1845-Sumdiv(快速幂取模+整数唯一分解定理+约数和公式+同余模公式)
Sumdiv Time Limit:1000MS Memory Limit:30000KB 64bit IO Format:%I64d & %I64u Submit Statu ...
- PTA 阶乘之和取模
阶乘之和取模 (25 分) 输入正整数n, 计算S = 1!+2!+...+n!的末6位(不含前导0). 这里1<=n<=109. 输入样例: 例如输入: 20 输出样例: 输出: ...
- Python小白的数学建模课-A3.12 个新冠疫情数模竞赛赛题与点评
新冠疫情深刻和全面地影响着社会和生活,已经成为数学建模竞赛的背景帝. 本文收集了与新冠疫情相关的的数学建模竞赛赛题,供大家参考,欢迎收藏关注. 『Python小白的数学建模课 @ Youcans』带你 ...
- 输入a,b,求a^b的所有因子之和
题目 poj的1845 分解a的质因数a=p1^t1*p2^t1........ 每个质因数对sum的贡献: 当除去质因数p1时的因数和为sum,当计入p1时,因子和变成sum*p1^0+sum*p1 ...
- 数学类杂志SCI2013-2014影响因子
ISSN Abbreviated Journal Title Full Title Category Subcategory Country total Cites IF 2013-20 ...
- 【Python3练习题 014】 一个数如果恰好等于它的因子之和,这个数就称为“完数”。例如6=1+2+3。编程找出1000以内的所有完数。
a.b只要数字a能被数字b整除,不论b是不是质数,都算是a的因子.比如:8的质因子是 2, 2, 2,但8的因子就包括 1,2,4. import math for i in range(2, 1 ...
随机推荐
- 王者荣耀交流协会——第7次Scrum会议
照片由刘耀泽同学拍摄 ,王露芝同学(外援)没有参加本次会议. 要求2 : 时间跨度:2017年10月19日 15:05 - 15:20 共计15分钟 要求3 : 地点:计算机楼107教室 要求4 : ...
- Python学习之路8 - 内置方法
abs(-230) #取绝对值 all([0,1,-5]) #如果参数里面的所有值都为真就返回真,否则返回假 any([0,1,-5]) #如果参数里面有一个值为真则返回真,否则返回假 ascii([ ...
- 关于mysql无法添加中文数据的问题以及解决方案
今天弄了一天的mysql数据库,就是被一个mysql数据库乱码的问题给缠住了.现在记录一下这个问题,虽然这个问题不是什么太大的事情,但还是记录一下. 问题是这样的: 1.先在mysql的安装文件当中, ...
- mysql的程序组成
MySQL的程序组成 1:客户端 mysql:客户端程序 mysqldump:mysql备份工具 mysqladmin:mysql管理工具 mysqlbinlog:二进制日志查询工具 2:服务端 my ...
- CDN问题
名称解释:正反向解析 主辅服务器 domain zone 记录:SOA.NS.A.CNAME.PRT.MX DNS配置文件中各字段作用,如TTL DNS端口号? TCP53和UDP53使用场合 Lin ...
- 结对编程——paperOne基于java web的简易四则运算出题网站
项目成员:张金生 张政 需求分析: 1.要进行四则运算: 2.运算题目随机: 3.进行对错判断: 4.整数运算. 程序概要: 1.用JSP实现: 2.用户可选择题目数量: 3.答题页用表格列出 ...
- 新手必备!11个强大的 Visual Studio 调试技巧
简介 调试是软件开发周期中很重要的一部分.它具有挑战性,同时也很让人疑惑和烦恼.总的来说,对于稍大一点的程序,调试是不可避免的.最近几年,调试工具的发展让很多调试任务变的越来越简单和省时. 这篇文章总 ...
- Web服务器负载均衡的几种方案 : DNS轮询
本篇主要讲一下最简单的方案——DNS轮询. DNS轮询 大多域名注册商都支持多条A记录 的解析,其实这就是DNS轮询 ,DNS 服务器 将解析请求按照A记录 的顺序,逐一分配到不同的IP上,这样就完成 ...
- [C/C++] 指针数组和数组指针
转自:http://www.cnblogs.com/Romi/archive/2012/01/10/2317898.html 这两个名字不同当然所代表的意思也就不同.我刚开始看到这就吓到了,主要是中文 ...
- 九度-题目1203:IP地址
http://ac.jobdu.com/problem.php?pid=1203 题目描述: 输入一个ip地址串,判断是否合法. 输入: 输入的第一行包括一个整数n(1<=n<=500), ...