自己写的代码:

#include <iostream>
#include <stdio.h>
#include <string.h>
/*
题意:相当于在一个m*n的矩形网格里放k个相同的石子,问有多少种方法?
限制条件:每个格子最多放一个石子,所有石子都要用完,并且第一行、最后一行、第一列、最后一列都得有石子。
思路:
直接求的话会比较麻烦,反过来想:
设总方案数为S,A={第一行没有石子},B={最后一行没有石子},C={第一列没有石子},D={最后一列没有石子}
利用容斥原理,先求|A并B并C并D|,然后再用|s|-|A并B并C并D|,即为答案。
而对于有r行,t列,摆放k个石子的方案数为C(r*t,k)。
*/
using namespace std;
const int maxn=;
const int mod=;
long long c[maxn*maxn][maxn*maxn];
int t,m,n,k;
void init(){
memset(c,,sizeof(c)); //先初始化为0,因为在计算容斥原理的时候,很有可能会出现C(i,j)(j>i)的情形,此时应该值为0
c[][]=;
for(int i=;i<maxn*maxn;i++){ //求出组合数
c[i][]=;
for(int j=;j<i;j++)
c[i][j]=(c[i-][j-]+c[i-][j])%mod;
c[i][i]=;
}
}
int main()
{
long long ans,tmp;
init();
scanf("%d",&t);
for(int i=;i<=t;i++){
ans=;
scanf("%d%d%d",&m,&n,&k);
if(k>m*n||k<)
ans=;
else{
//先求|A并B并C并D|,由于只有四个元素,所以直接写出式子了
ans=(*c[(m-)*n][k]+*c[m*(n-)][k])%mod;
tmp=((c[(m-)*n][k]+*c[(m-)*(n-)][k]%mod)%mod+c[(n-)*m][k])%mod;
ans=(ans-tmp+mod)%mod;
ans=(ans+*c[(m-)*(n-)][k])%mod;
ans=(ans+*c[(m-)*(n-)][k])%mod;
ans=(ans+mod-c[(m-)*(n-)][k])%mod; ans=(c[m*n][k]-ans+mod)%mod; //最后再用所有总的方案数减去ans值,即为最后要求的答案
}
printf("Case %d: %lld\n",i,ans);
}
return ;
}

白书上的代码:

#include <iostream>
#include <stdio.h>
#include <string.h>
/*
题意:相当于在一个m*n的矩形网格里放k个相同的石子,问有多少种方法?
限制条件:每个格子最多放一个石子,所有石子都要用完,并且第一行、最后一行、第一列、最后一列都得有石子。
思路:
直接求的话会比较麻烦,反过来想:
设总方案数为S,A={第一行没有石子},B={最后一行没有石子},C={第一列没有石子},D={最后一列没有石子}
利用容斥原理,先求|A并B并C并D|,然后再用|s|-|A并B并C并D|,即为答案。
而对于有r行,t列,摆放k个石子的方案数为C(r*t,k)。
*/
using namespace std;
const int maxn=;
const int mod=;
int C[maxn*maxn][maxn*maxn];
int t,m,n,k;
void init(){
memset(C,,sizeof(C)); //先初始化为0,因为在计算容斥原理的时候,很有可能会出现C(i,j)(j>i)的情形,此时应该值为0
C[][]=;
for(int i=;i<maxn*maxn;i++){ //求出组合数
C[i][]=;
for(int j=;j<i;j++)
C[i][j]=(C[i-][j-]+C[i-][j])%mod;
C[i][i]=;
}
} int main()
{
init();
scanf("%d",&t);
for(int i=;i<=t;i++){
int sum=;
scanf("%d%d%d",&m,&n,&k);
//枚举所有16种搭配方式,s=0表明是总的方案数
//由于最后我们求的是补给的个数,所以在用容斥原理的时候稍作修改:
//原本奇数个集合是加,改为减;偶数个集合是减,改为加
for(int s=;s<;s++){
int b=,r=n,c=m; //b统计该方案数对应的集合的个数,r和c是可以放置的行列数
if(s&){
b++;
r--;
}
if(s&(<<)){
b++;
r--;
}
if(s&(<<)){
b++;
c--;
}
if(s&(<<)){
b++;
c--;
}
if(b&)
sum=(sum+mod-C[r*c][k])%mod; //奇数个集合,做减法
else
sum=(sum+C[r*c][k])%mod; //偶数个集合,做加法
}
printf("Case %d: %d\n",i,sum);
}
return ;
}

UVA 11806 Cheerleaders (组合+容斥原理)的更多相关文章

  1. UVA.11806 Cheerleaders (组合数学 容斥原理 二进制枚举)

    UVA.11806 Cheerleaders (组合数学 容斥原理 二进制枚举) 题意分析 给出n*m的矩形格子,给出k个点,每个格子里面可以放一个点.现在要求格子的最外围一圈的每行每列,至少要放一个 ...

  2. UVa 11806 - Cheerleaders (组合计数+容斥原理)

    <训练指南>p.108 #include <cstdio> #include <cstring> #include <cstdlib> using na ...

  3. UVa 11806 Cheerleaders (容斥原理+二进制表示状态)

    In most professional sporting events, cheerleaders play a major role in entertaining the spectators. ...

  4. UVA 11806 Cheerleaders (容斥原理

    1.题意描述 本题大致意思是讲:给定一个广场,把它分为M行N列的正方形小框.现在给定有K个拉拉队员,每一个拉拉队员需要站在小框内进行表演.但是表演过程中有如下要求: (1)每一个小框只能站立一个拉拉队 ...

  5. UVa 11806 Cheerleaders (数论容斥原理)

    题意:给定一个n*m的棋盘,要放k个石子,要求第一行,最后一行,第一列,最后一列都有石子,问有多少种放法. 析:容斥原理,集合A是第一行没有石子,集合B是最后一行没有石子,集合C是第一列没有石子,集合 ...

  6. UVA - 11806 Cheerleaders (容斥原理)

    题意:在N*M个方格中放K个点,要求第一行,第一列,最后一行,最后一列必须放,问有多少种方法. 分析: 1.集合A,B,C,D分别代表第一行,第一列,最后一行,最后一列放. 则这四行必须放=随便放C[ ...

  7. uva 11806 Cheerleaders

    // uva 11806 Cheerleaders // // 题目大意: // // 给你n * m的矩形格子,要求放k个相同的石子,使得矩形的第一行 // 第一列,最后一行,最后一列都必须有石子. ...

  8. UVA 11806 Cheerleaders (容斥原理)

    题意 一个n*m的区域内,放k个啦啦队员,第一行,最后一行,第一列,最后一列一定要放,一共有多少种方法. 思路 设A1表示第一行放,A2表示最后一行放,A3表示第一列放,A4表示最后一列放,则要求|A ...

  9. 【递推】【组合数】【容斥原理】UVA - 11806 - Cheerleaders

    http://www.cnblogs.com/khbcsu/p/4245943.html 本题如果直接枚举的话难度很大并且会无从下手.那么我们是否可以采取逆向思考的方法来解决问题呢?我们可以用总的情况 ...

随机推荐

  1. C++ 11 之学习总结

    感慨时间过的好快,C++ 11出来都5年了,现在才开始学习,但为时也不晚: 主要是网上及身边的朋友大肆宣扬C++ 11的某些优化,弄得别人心里痒痒的,所以就花了3天学习了点基本知识,相对于整个C++ ...

  2. c++对象内存布局

    这篇文章我要简单地讲解下c++对象的内存布局,虽然已经有很多很好的文章,不过通过实现发现有些地方不同的编译器还是会有差别的,希望和大家交流. 在没有用到虚函数的时候,C++的对象内存布局和c语言的st ...

  3. JS事件冒泡与捕获

    1事件传播——冒泡与捕获 默认情况下,事件使用冒泡事件流,不使用捕获事件流.然而,在Firefox和Safari里,你可以显式的指定使用捕获事件流,方法是在注册事件时传入useCapture参数,将这 ...

  4. 【Qt】Qt之启动外部程序【转】

    简述 QProcess可以用来启动外部程序,并与它们交互. 要启动一个进程,通过调用start()来进行,参数包含程序的名称和命令行参数,参数作为一个QStringList的单个字符串. 另外,也可以 ...

  5. PHP中$_REQUEST中包含的数据,数据被覆盖问题

    这个问题涉及到php.ini中的两个变量. variables_order = "EGPCS" variables_order 系统在定义PHP预定义变量,EGPCS 是 Envi ...

  6. vmware虚拟机上网:NAT搭建局域网

    若是你不知道的情况下,可以编辑虚拟机网络配置,然后恢复默认,vmware会自动给你分配好ip,默认使用的是vmware8,下面的是使用默认的配置 看图 注意:子网的ip一定要在如上图所示的范围 适配器 ...

  7. Django之Model(一)--基础篇

    0.数据库配置 django默认支持sqlite,mysql, oracle,postgresql数据库.Django连接数据库默认编码使用UTF8,使用中文不需要特别设置. sqlite djang ...

  8. EF-Code First 入门

    本文程序基于VS2015.EF6.1,本文不做过多深入讨论,只是个入门. EF 就是微软的 EntityFramework,主要分为 DB First,Model First,Code First.之 ...

  9. Hive内表和外表的区别

    本文以例子的形式介绍一下Hive内表和外表的区别.例子共有4个:不带分区的内表.带分区的内表.不带分区的外表.带分区的外表. 1 不带分区的内表 #创建表 create table innerTabl ...

  10. 安装gcc及开发环境

    安装gcc及开发环境================================> 安装gcc:     * apt-get install build-essential    * gcc ...