自己写的代码:

#include <iostream>
#include <stdio.h>
#include <string.h>
/*
题意:相当于在一个m*n的矩形网格里放k个相同的石子,问有多少种方法?
限制条件:每个格子最多放一个石子,所有石子都要用完,并且第一行、最后一行、第一列、最后一列都得有石子。
思路:
直接求的话会比较麻烦,反过来想:
设总方案数为S,A={第一行没有石子},B={最后一行没有石子},C={第一列没有石子},D={最后一列没有石子}
利用容斥原理,先求|A并B并C并D|,然后再用|s|-|A并B并C并D|,即为答案。
而对于有r行,t列,摆放k个石子的方案数为C(r*t,k)。
*/
using namespace std;
const int maxn=;
const int mod=;
long long c[maxn*maxn][maxn*maxn];
int t,m,n,k;
void init(){
memset(c,,sizeof(c)); //先初始化为0,因为在计算容斥原理的时候,很有可能会出现C(i,j)(j>i)的情形,此时应该值为0
c[][]=;
for(int i=;i<maxn*maxn;i++){ //求出组合数
c[i][]=;
for(int j=;j<i;j++)
c[i][j]=(c[i-][j-]+c[i-][j])%mod;
c[i][i]=;
}
}
int main()
{
long long ans,tmp;
init();
scanf("%d",&t);
for(int i=;i<=t;i++){
ans=;
scanf("%d%d%d",&m,&n,&k);
if(k>m*n||k<)
ans=;
else{
//先求|A并B并C并D|,由于只有四个元素,所以直接写出式子了
ans=(*c[(m-)*n][k]+*c[m*(n-)][k])%mod;
tmp=((c[(m-)*n][k]+*c[(m-)*(n-)][k]%mod)%mod+c[(n-)*m][k])%mod;
ans=(ans-tmp+mod)%mod;
ans=(ans+*c[(m-)*(n-)][k])%mod;
ans=(ans+*c[(m-)*(n-)][k])%mod;
ans=(ans+mod-c[(m-)*(n-)][k])%mod; ans=(c[m*n][k]-ans+mod)%mod; //最后再用所有总的方案数减去ans值,即为最后要求的答案
}
printf("Case %d: %lld\n",i,ans);
}
return ;
}

白书上的代码:

#include <iostream>
#include <stdio.h>
#include <string.h>
/*
题意:相当于在一个m*n的矩形网格里放k个相同的石子,问有多少种方法?
限制条件:每个格子最多放一个石子,所有石子都要用完,并且第一行、最后一行、第一列、最后一列都得有石子。
思路:
直接求的话会比较麻烦,反过来想:
设总方案数为S,A={第一行没有石子},B={最后一行没有石子},C={第一列没有石子},D={最后一列没有石子}
利用容斥原理,先求|A并B并C并D|,然后再用|s|-|A并B并C并D|,即为答案。
而对于有r行,t列,摆放k个石子的方案数为C(r*t,k)。
*/
using namespace std;
const int maxn=;
const int mod=;
int C[maxn*maxn][maxn*maxn];
int t,m,n,k;
void init(){
memset(C,,sizeof(C)); //先初始化为0,因为在计算容斥原理的时候,很有可能会出现C(i,j)(j>i)的情形,此时应该值为0
C[][]=;
for(int i=;i<maxn*maxn;i++){ //求出组合数
C[i][]=;
for(int j=;j<i;j++)
C[i][j]=(C[i-][j-]+C[i-][j])%mod;
C[i][i]=;
}
} int main()
{
init();
scanf("%d",&t);
for(int i=;i<=t;i++){
int sum=;
scanf("%d%d%d",&m,&n,&k);
//枚举所有16种搭配方式,s=0表明是总的方案数
//由于最后我们求的是补给的个数,所以在用容斥原理的时候稍作修改:
//原本奇数个集合是加,改为减;偶数个集合是减,改为加
for(int s=;s<;s++){
int b=,r=n,c=m; //b统计该方案数对应的集合的个数,r和c是可以放置的行列数
if(s&){
b++;
r--;
}
if(s&(<<)){
b++;
r--;
}
if(s&(<<)){
b++;
c--;
}
if(s&(<<)){
b++;
c--;
}
if(b&)
sum=(sum+mod-C[r*c][k])%mod; //奇数个集合,做减法
else
sum=(sum+C[r*c][k])%mod; //偶数个集合,做加法
}
printf("Case %d: %d\n",i,sum);
}
return ;
}

UVA 11806 Cheerleaders (组合+容斥原理)的更多相关文章

  1. UVA.11806 Cheerleaders (组合数学 容斥原理 二进制枚举)

    UVA.11806 Cheerleaders (组合数学 容斥原理 二进制枚举) 题意分析 给出n*m的矩形格子,给出k个点,每个格子里面可以放一个点.现在要求格子的最外围一圈的每行每列,至少要放一个 ...

  2. UVa 11806 - Cheerleaders (组合计数+容斥原理)

    <训练指南>p.108 #include <cstdio> #include <cstring> #include <cstdlib> using na ...

  3. UVa 11806 Cheerleaders (容斥原理+二进制表示状态)

    In most professional sporting events, cheerleaders play a major role in entertaining the spectators. ...

  4. UVA 11806 Cheerleaders (容斥原理

    1.题意描述 本题大致意思是讲:给定一个广场,把它分为M行N列的正方形小框.现在给定有K个拉拉队员,每一个拉拉队员需要站在小框内进行表演.但是表演过程中有如下要求: (1)每一个小框只能站立一个拉拉队 ...

  5. UVa 11806 Cheerleaders (数论容斥原理)

    题意:给定一个n*m的棋盘,要放k个石子,要求第一行,最后一行,第一列,最后一列都有石子,问有多少种放法. 析:容斥原理,集合A是第一行没有石子,集合B是最后一行没有石子,集合C是第一列没有石子,集合 ...

  6. UVA - 11806 Cheerleaders (容斥原理)

    题意:在N*M个方格中放K个点,要求第一行,第一列,最后一行,最后一列必须放,问有多少种方法. 分析: 1.集合A,B,C,D分别代表第一行,第一列,最后一行,最后一列放. 则这四行必须放=随便放C[ ...

  7. uva 11806 Cheerleaders

    // uva 11806 Cheerleaders // // 题目大意: // // 给你n * m的矩形格子,要求放k个相同的石子,使得矩形的第一行 // 第一列,最后一行,最后一列都必须有石子. ...

  8. UVA 11806 Cheerleaders (容斥原理)

    题意 一个n*m的区域内,放k个啦啦队员,第一行,最后一行,第一列,最后一列一定要放,一共有多少种方法. 思路 设A1表示第一行放,A2表示最后一行放,A3表示第一列放,A4表示最后一列放,则要求|A ...

  9. 【递推】【组合数】【容斥原理】UVA - 11806 - Cheerleaders

    http://www.cnblogs.com/khbcsu/p/4245943.html 本题如果直接枚举的话难度很大并且会无从下手.那么我们是否可以采取逆向思考的方法来解决问题呢?我们可以用总的情况 ...

随机推荐

  1. [Silverlight] Visual Studio2010不能安装Silverlight4_Tools,提示语言不一致

    今天在装Silverlight4_Tools时出现“必须先安装与 Silverlight Tools 4 语言版本相一致的 Visual Studio 2010.Visual Web Develope ...

  2. HIV T2

    甲学者将HIV病毒的遗传物质彻底水解后得到A.B.C三种化合物,乙学者将组成T2噬菌体的遗传物质彻底水解后得到了A.B.D三种化合物.你认为C.D两种化合物分别指的是 A.尿嘧啶.胸腺嘧啶 B.胸腺嘧 ...

  3. [GeekBand]C++高级编程技术(2)

    本篇笔记主要分为两个主要部分,第一部分关于对象模型,第二部分是关于new和delete的更加深入的学习. 一.对象模型 关于vptr(虚指针)和vtbl(虚函数表) 只要用到了虚函数,对象中就会多一个 ...

  4. Linux platform设备简介

    Technorati 标签: Linux platform     Linux在2.6内核中,针对一系列设备驱动,提供新的管理框架,成为platform机制,推出的目的,在于隔离驱动的资源和实现,使得 ...

  5. monkey 测试 adb shell monkey

    adb shell monkey -p com.android.recorder --throttle 360 --ignore-crashes --monitor-native-crashes -- ...

  6. Perl的主要应用领域

    1.Unix系统的维护功能    如我们在前面所说的,Perl可以作为传统Unix系统维护工具的替代,在这方面,它可以对文本文件,特别是对配置文件(还记不记得在配置Linux系统中的文本方式的配置)进 ...

  7. laravel框架少见方法详解

    1.whereDate() 方法 $q->where('created_at', '>=', date('Y-m-d').' 00:00:00')); 以前查数据时,直接用where条件来 ...

  8. PHP获取时间日期的多种方法

    分享下PHP获取时间日期的多种方法. <?php echo "今天:".date("Y-m-d")."<br>";     ...

  9. Mysql 正则获取字段的交集【转】

    问题描述 比如table1中有两条记录 name no a    2,9 b    8,10 然后有一串字符串,是0,1,2,3,4 然后通过一条sql,找出no为2,9的记录来``` 因为字符串中有 ...

  10. fast_recovery_area无剩余空间(ORA-19815)

    一.问题现象 --执行日志切换时,夯住 SQL ('/u01/oradata/oracle/redo04.log') size 50m; SQL> alter system switch log ...