Project Euler 92:Square digit chains 平方数字链
题目
A number chain is created by continuously adding the square of the digits in a number to form a new number until it has been seen before.
For example,
44 → 32 → 13 → 10 → 1 → 1
85 → 89 → 145 → 42 → 20 → 4 → 16 → 37 → 58 → 89
Therefore any chain that arrives at 1 or 89 will become stuck in an endless loop. What is most amazing is that EVERY starting number will eventually arrive at 1 or 89.
How many starting numbers below ten million will arrive at 89?
将一个数的所有数字的平方相加得到一个新的数,不断重复直到新的数已经出现过为止,这构成了一条数字链。
例如,
44 → 32 → 13 → 10 → 1 → 1
85 → 89 → 145 → 42 → 20 → 4 → 16 → 37 → 58 → 89
可见,任何一个到达1或89的数字链都会陷入无尽的循环。更令人惊奇的是,从任意数开始,最终都会到达1或89。
有多少个小于一千万的数最终会到达89?
解题
这个链式的之前好有有个题目和这个差不多的,直接暴力很简单。
JAVA
package Level3;
public class PE092{
static void run(){
int MAX = 10000000;
int count = 0;
for(int num=1;num<=MAX;num++){
int numx = num;
if(is89(numx))
count +=1;
}
System.out.println(count);
}
// 8581146
// running time=1s973ms
static boolean is89(int num){
int next_num = num;
while(true){
if(next_num == 89) break;
if(next_num == 1) break;
next_num = nextNum(next_num);
}
if(next_num ==89)
return true;
return false;
}
static int nextNum(int num){
int next_num = 0;
while(num!=0){
int tmp = num%10;
next_num += tmp*tmp;
num/=10;
}
return next_num;
}
public static void main(String[] args) {
long t0 = System.currentTimeMillis();
run();
long t1 = System.currentTimeMillis();
long t = t1 - t0;
System.out.println("running time="+t/1000+"s"+t%1000+"ms");
}
}
Python运行时间比较长
# coding=gbk import time as time
from itertools import combinations
def run():
MAX = 10000000
count = 0
for num in range(1,MAX):
if is89(num):
count+=1
print count # 8581146
# running time= 305.638000011 s
def next_num(num):
return sum([a*a for a in map(int ,str(num))]) def is89(num):
while True:
if num == 89 or num == 1:
break
num = next_num(num)
if num == 89:
return True
return False t0 = time.time()
run()
t1 = time.time()
print "running time=",(t1-t0),"s"
85 → 89 → 145 → 42 → 20 → 4 → 16 → 37 → 58 → 89
题目给了一个这样的提示,只有我们知道中间的数,就一定能到89
最大值是9999999 ,nextnum = 9*9*7 = 567 ,可以定义一个568的数组来保存中间的计算结果能到达89的。
这里我只定义一个boolean数组Judge。先保存前一步的值numx, 若nextnum[numx] == 89 则,则Judge[numx] ==True
在以后我们可以先判断nextnum在Judge中是否是true,true就不用计算了。
当然如果定义一个矩阵,保存所有的计算中间值,这个比较复杂啊,对了,可以定义一个set,也很好判断是否存在。下面尝试一下。
下面run2() 是定义boolean数组的,run3()是定义两个set的。
定义boolean数组的 对所有的值是否都能判断? 这里就不知道了。所以才想起了定义set的
package Level3;
import java.util.TreeSet;
public class PE092{
static void run3(){
int MAX = 10000000;
int count =0;
TreeSet<Integer> path = new TreeSet<Integer>();
TreeSet<Integer> judge = new TreeSet<Integer>();
for(int num =2;num<MAX;num++){
int numx = nextNum(num);
if(path.contains(numx)){
count +=1;
}else{
while(true){
judge.add(numx);
numx = nextNum(numx);
if(path.contains(numx) || numx==89){
path.addAll(judge);
judge.clear();
count +=1;
break;
}
if(numx == 1){
judge.clear();
break;
}
}
}
}
System.out.println(count);
}
// 8581146
// running time=0s953ms
// 9*9*7 = 567 定义一个长度是567的数组保存之前计算过程中的值
// 若以89结束定义为true 以后认为是true就可以直接认为是89结束了
static void run2(){
int MAX = 10000000;
int count = 0;
boolean Judge[] = new boolean[568];
for(int num =1;num<MAX;num++){
// 求下一个数
int numx = nextNum(num);
// 下一个数是否计算过
if(Judge[numx]){
count+=1;
}else{
while(true){
// 继续求下一个数
int tmp = nextNum(numx);
// 计算过或者 遇到89的时候把之前的数更行Judge[numx]
if(Judge[tmp] || tmp==89){
count+=1;
Judge[numx] = true;
break;
}
if(tmp ==1) break;
numx = tmp;
}
}
}
System.out.println(count);
}
// 8581146
// running time=0s944ms
static void run(){
int MAX = 10000000;
int count = 0;
for(int num=1;num<=MAX;num++){
int numx = num;
if(is89(numx))
count +=1;
}
System.out.println(count);
}
// 8581146
// running time=1s973ms
static boolean is89(int num){
int next_num = num;
while(true){
if(next_num == 89) break;
if(next_num == 1) break;
next_num = nextNum(next_num);
}
if(next_num ==89)
return true;
return false;
}
static int nextNum(int num){
int next_num = 0;
while(num!=0){
int tmp = num%10;
next_num += tmp*tmp;
num/=10;
}
return next_num;
}
public static void main(String[] args) {
long t0 = System.currentTimeMillis();
run2();
long t1 = System.currentTimeMillis();
long t = t1 - t0;
System.out.println("running time="+t/1000+"s"+t%1000+"ms");
}
}
Python
# coding=gbk import time as time
def run2():
MAX = 10000000
count = 0
path=[]
judge=[]
for num in range(1,MAX):
numx = next_num(num)
if numx in path:
count +=1
else:
while True:
judge.append(numx)
numx = next_num(numx)
if numx in path or numx == 89:
count+=1
path +=judge
judge=[]
break
if numx ==1:
judge = []
break
print count
#
# running time= 165.453000069 s
Project Euler 92:Square digit chains 平方数字链的更多相关文章
- Project Euler 92:Square digit chains C++
A number chain is created by continuously adding the square of the digits in a number to form a new ...
- (Problem 92)Square digit chains
A number chain is created by continuously adding the square of the digits in a number to form a new ...
- Project Euler 51: Prime digit replacements
通过替换*3这样一个两位数的第一位,我们可以发现形成的九个数字有六个是质数,即13, 23,43,53,73,83.类似的,如果我们用同样的数字替换56**3这样一个五位数的第三位和第四位,会生成56 ...
- Project Euler 56: Powerful digit sum
一个古戈尔也就是\(10^{100}\)是一个天文数字,一后面跟着一百个零.\(100^{100}\)更是难以想像的大,一后面跟着两百个零.但是尽管这个数字很大,它们各位数字的和却只等于一.考虑两个自 ...
- Project Euler 57: Square root convergents
五十七.平方根收敛(Square root convergents) 二的平方根可以表示为以下这个无穷连分数: \[ \sqrt 2 =1+ \frac 1 {2+ \frac 1 {2 +\frac ...
- Project Euler #80: Square root digital expansion
from decimal import getcontext, Decimal def main(): n = int(raw_input()) p = int(raw_input()) getcon ...
- 【easy】367. Valid Perfect Square 判断是不是平方数
class Solution { public: bool isPerfectSquare(int num) { /* //方法一:蜜汁超时…… if (num < 0) return fals ...
- Project Euler 20 Factorial digit sum( 大数乘法 )
题意:求出100!的各位数字和. /************************************************************************* > Fil ...
- Project Euler 16 Power digit sum( 大数乘法 )
题意: 215 = 32768,而32768的各位数字之和是 3 + 2 + 7 + 6 + 8 = 26. 21000的各位数字之和是多少? 思路:大数乘法,计算 210 × 100 可加速计算,每 ...
随机推荐
- textarea 在光标处插入文字
效果演示 // 欢迎访问cssfirefly.cnblogs.com html: <textarea id="text" style="width:500px;he ...
- Delphi XE5教程5:程序的结构和语法
内容源自Delphi XE5 UPDATE 2官方帮助<Delphi Reference>,本人水平有限,欢迎各位高人修正相关错误! 也欢迎各位加入到Delphi学习资料汉化中来,有兴趣者 ...
- Microsoft Press Free eBook
微软的免费的电子书, 都是Microsoft Press 出版的 有以下价格方面 Windows Server(大体上都是Windows Server 2012 ) Microsoft Azure(好 ...
- linux下的汇编环境搭建(nasm)
第一步:先判断系统是否已经安装了nasm--------------->打开终端,执行whereis nasm :如果显示nasm: /usr/bin/nasm ,则已经安装:如果只显示nasm ...
- 横轴墨卡托 (Transverse Mercator) 投影
横轴墨卡托 (Transverse Mercator) 投影 描述 此投影又称为高斯-克吕格投影,它与墨卡托投影相似,不同之处在于圆柱是沿经线而非赤道纵向排列.通过这种方法生成的等角投影不会保持真实的 ...
- Android系统SVC命令教程
svc命令,位置在/system/bin目录下,用来管理电源控制,无线数据,WIFI # svc svc Available commands: help Show information about ...
- JS类库函数收集中....
实现string的substring方法 方法一:用charAt取出截取部分 String.prototype.mysubstring=function(beginIndex,endIndex){ v ...
- php将数据库导出成excel的方法
<?php $fname = $_FILES['MyFile']['name']; $do = copy($_FILES['MyFile']['tmp_name'],$fname); if ($ ...
- 利用QObject反射实现jsonrpc
1.jsonrpc请求中的params数组生成签名 static QString signatureFromJsonArray(const QJsonArray &array) { QStri ...
- java集合类(四)About Set
接上篇:java集合类(三)About Iterator & Vector(Stack) 之前,在比较java常见集合类的时候,就了解到一点有关Set的特性.实现类及其要求等,读者可以去温习下 ...