在解上面这个问题前我们要先解决一个类似的问题:求字符串s的所有后缀和s本身的最长公共前缀;

我们用next[]数组保存这些值;

现在我们假设要求next[ x ],并且next[ i ] 0<i<x的值都已经求出;

我们设p = k + next[k] - 1, k是使p最大的 i  (0<i<x);如图:

现在整理一下问题:

  已知:s[k..p] == s[ 0 .. next[ k ]-1 ],求s[x .. n-1]与s[0 .. n-1]的最长公共前缀;

  由s[k .. p] == s[ 0 .. next[ k ]-1 ] 得:

s[x .. p] == s[x-k .. next[ k ]-1 ]    ---------1//这个是显然的

并设L1=p-x+1;

因为x-k肯定是小于x的所以  L2=next[x-k]是已知的,得:

s[0 ..  L2-1] == s[x-k .. x-k+L2-1];      --------2

通过等式1,2可以推出 s[0 .. k1] == s[x .. k2]

if  L1<=L2  then  如下图

表示s[0 .. L1-1] == s[x .. x+L1-1]但不能确定蓝色部分是否相等,所以需要继续比下去

if  L1 > L2   then 如下图:

表示s[0 ..  L2-1] == s[x .. x+L2-1] 而且因为L2 = next[x-k]使得s[L2] != s[x+L2]

所以next[x] = L2;

证明:假设s[L2]==s[x+L2],又因为s[x+L2]==s[x-k+L2]//由1推出

所以s[L2]==s[x-k+L2] 所以next[x-k]==L2+1与next[x-k]==L2矛盾

 void getNext(char *s,int next[]){
int nn = strlen(s);
next[] = nn;
int p = ;
while (p+ < nn && s[p] == s[p+]) p++;
next[] = p;
int k = , L;
for (int i = ; i < nn; i++){
p = k + next[k] - ; L = next[i - k];
if (i + L <= p) next[i] = L;
else {
int j = p - i + ;
if (j < ) j = ;
while (i + j < nn && s[i + j] == s[j]) j++;
next[i] = j; k = i; }
}
/* for (int i=0;i<nn;i++){
cout<< next[i] <<" ";
}cout<<endl;
*/
}

回到原来的问题

此时已经求出next[],我们用extend[]保存字符串S的所有后缀和字符串T的最长公共前缀的值

我们重复上面的过程:

现在我们假设要求extend[ x ],并且extend[ i ] 0<i<x的值都已经求出;

我们设p = k + extend[k] - 1, k是使p最大的 i  (0<i<x);如图:

现在整理一下问题:

  已知:s[k..p] == T[ 0 .. extend[ k ]-1 ],求s[x .. n-1]与T[0 .. m-1]的最长公共前缀;

  由s[k .. p] == T[ 0 .. extend[ k ]-1 ] 得:

s[x .. p] == T[x-k .. extend[ k ]-1 ]    ---------1//这个是显然的

并设L1=p-x+1;

因为x-k肯定是小于x的所以  L2=next[x-k]是已知的,得:

T[0 ..  L2-1] == T[x-k .. x-k+L2-1];      --------2

通过等式1,2可以推出 T[0 .. k1] == s[x .. k2]

if  L1<=L2  then  如下图

表示T[0 .. L1-1] == s[x .. x+L1-1]但不能确定蓝色部分是否相等,所以需要继续比下去

if  L1 > L2   then 如下图:

表示T[0 ..  L2-1] == s[x .. x+L2-1] 而且因为L2 = extend[x-k]使得T[L2] != s[x+L2]

所以extend[x] = L2;

证明:假设T[L2]==s[x+L2],又因为s[x+L2]==T[x-k+L2]//由1推出

所以T[L2]==s[x-k+L2] 所以extend[x-k]==L2+1与extend[x-k]==L2矛盾

 void getExtend(char *s,char *T,int extend[]){
int nn = strlen(s) ,mm = strlen(T);
getNext(s,next);
int p = ;
while (p < nn && s[p] == T[p]) p++;
extend[] = p;
//extend[1] = p;
int k = , L;
for (int i = ; i < nn; i++){
p = k + extend[k] - ; L = next[i - k];
if (i + L <= p) extend[i] = L;
else {
int j = p - i + ;
if (j < ) j = ;
while (i + j < nn && s[i + j] == T[j]) j++;
extend[i] = j; k = i; }
}
/* for (int i=0;i<nn;i++){
cout<< extend[i] <<" ";
}cout<<endl;
*/
}

时间复杂度分析:

对于s串,每一位最多比较一次所以时间是O(n)的;

扩展KMP--求字符串S的所有后缀和字符串T的最长公共前缀的更多相关文章

  1. hdu6153 扩展kmp求一个字符串的后缀在另一个字符串出现的次数。

    /** 题目:hdu6153 链接:http://acm.hdu.edu.cn/showproblem.php?pid=6153 题意:给定两个串,求其中一个串t的每个后缀在另一个串s中出现的次数乘以 ...

  2. hdoj 2594 Simpsons’ Hidden Talents 【KMP】【求串的最长公共前缀后缀】

    Simpsons' Hidden Talents Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java ...

  3. [转][LeetCode]Longest Common Prefix ——求字符串的最长公共前缀

    题记: 这道题不难但是很有意思,有两种解题思路,可以说一种是横向扫描,一种是纵向扫描. 横向扫描:遍历所有字符串,每次跟当前得出的最长公共前缀串进行对比,不断修正,最后得出最长公共前缀串. 纵向扫描: ...

  4. LeetCode -- 求字符串数组中的最长公共前缀

    题目描写叙述: Write a function to find the longest common prefix string amongst an array of strings.就是给定1个 ...

  5. BNUOJ34990--Justice String (exkmp求最长公共前缀)

    Justice String Given two strings A and B, your task is to find a substring of A called justice strin ...

  6. CSU1632Repeated Substrings(后缀数组/最长公共前缀)

    题意就是求一个字符串的重复出现(出现次数>=2)的不同子串的个数. 标准解法是后缀数组.最长公共前缀的应用,对于样例aabaab,先将所有后缀排序: aab 3    aabaab 1    a ...

  7. python 字符串最长公共前缀

      编写一个函数来查找字符串数组中的最长公共前缀. 如果不存在公共前缀,返回空字符串 "". 示例 1: 输入: ["flower","flow&qu ...

  8. leetcode.字符串.14最长公共前缀-Java

    1. 具体题目 编写一个函数来查找字符串数组中的最长公共前缀.如果不存在公共前缀,返回空字符串 "". 示例 1: 输入: ["flower","fl ...

  9. HDU 3613 Best Reward(扩展KMP求前后缀回文串)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=3613 题目大意: 大意就是将字符串s分成两部分子串,若子串是回文串则需计算价值,否则价值为0,求分割 ...

随机推荐

  1. NFC(4)响应NFC设备时启动activity的四重过滤机制

    响应NFC设备时启动activity的四重过滤机制 在一个NFC设备读取NFC标签或另一个NFC设备中的数据之前会在0.1秒之内建立NFC连接,然后数据会自动从被读取一端流向读取数据的一端(NFC设备 ...

  2. Android开发之执行定时任务AlarmManager,Timer,Thread

    1.Thread:使用线程方式2.Timer是java的特性3.AlarmManager:AlarmManager将应用与服务分割开来后,使得应用程序开发者不用 关心具体的服务,而是直接通过Alarm ...

  3. CSS+DIV问题!DIV的最小高度问题!

    DIV层的最小高度问题!就是一个DIV有个最小高度,但是如果DIV层中的内容很多,DIV的高度会根据内容而进行拉长!要求IE6.IE7还有firefox都要兼容!我试了很多网上的方法都不好用!请测试后 ...

  4. apache开源项目-- UIMA

    UIMA (Unstructured Information Management applications) 是一个软件系统,用来分析大量的非结构化信息从而发掘中对最终用户有用的知识点,一个最典型的 ...

  5. request的用法

    Request从几个集合取数据是有顺序的,从前到后的顺序依次是 QueryString,Form,最后是ServerVariables.Request对象按照这样的顺序依次搜索这几个集合中的变量,如果 ...

  6. HDU 5430 Reflect

    题意:问在一个圆形的镜面里,从任意一点发出一个光源,经n次反射回到起点的情况数是多少. 解法:直接贴题解吧…… 求1至N+1中与N+1互质的个数,即欧拉函数. 代码: #include<stdi ...

  7. BaseAdapter中重写getview的心得以及发现convertView回收的机制

    以前一直在用BaseAdapter,对于其中的getview方法的重写一直不太清楚.今天终于得以有空来探究它的详细机制. 下面先讲讲我遇到的几个问题: 一.View getview(int posit ...

  8. 从python run 和python unittest两种eclipse运行方式深入理解if __name__ == "__main__"

    在写一个简单的python测试程序的时候,发现eclipse中Run as "Python run 和 Python unittest”结果不一样?为什么会不一样? 先贴一下代码段: # - ...

  9. Win7远程登录Ubuntu14.04

    Quote: http://www.xp74.com/article/news/6083.htm Method: One:vnc连接,实现图形化登录 优点:图形化操作,较第二种方法快 缺点:效率不是最 ...

  10. TRANSLATE

    语法格式: TRANSLATE(expr, from_string, to_string) 示例如下: SELECT TRANSLATE('ab 你好 bcdefg', 'abcdefg', '123 ...