题目:Bridge Across Islands

分析:以下内容来自:http://blog.csdn.net/acmaker/article/details/3178696

考虑如下的算法, 算法的输入是两个分别有m和n个顺时针给定顶点的凸多边形P和Q。

1.计算P上y坐标值最小的顶点(称为 yminP )和Q上y坐标值最大的顶点(称为 ymaxQ)。

2.为多边形在 yminP 和 ymaxQ 处构造两条切线 LP 和 LQ 使得他们对应的多边形位于他们的右侧。

  此时 LP 和 LQ 拥有不同的方向, 并且 yminP 和 ymaxQ 成为了多边形间的一个对踵点对。

3.计算距离(yminP,ymaxQ) 并且将其维护为当前最小值。

4.顺时针同时旋转平行线直到其中一个与其所在的多边形的边重合。

5.如果只有一条线与边重合, 那么只需要计算“顶点-边”对踵点对和“顶点-顶点”对踵点对距离。 都将他们与当前最小值

比较, 如果小于当前最小值则进行替换更新。如果两条切线都与边重合,那么情况就更加复杂了。如果边“交叠”,也就是

可以构造一条与两条边都相交的公垂线(但不是在顶点处相交), 那么就计算“边-边”距离。 否则计算三个新的“顶点-顶

点”对踵点对距离。 所有的这些距离都与当前最小值进行比较, 若小于当前最小值则更新替换。

6.重复执行步骤4和步骤5, 直到新的点对为(yminP,ymaxQ)。

7.输出最小距离。


 

#include <iostream>
#include <string.h>
#include <algorithm>
#include <stdio.h>
#include <math.h> using namespace std; const int N=50000;
const double eps=1e-9;
const double INF=1e99; struct Point
{
double x,y;
}; Point P[N],Q[N]; double cross(Point A,Point B,Point C)
{
return (B.x-A.x)*(C.y-A.y)-(B.y-A.y)*(C.x-A.x);
} double dist(Point A,Point B)
{
return sqrt((A.x-B.x)*(A.x-B.x)+(A.y-B.y)*(A.y-B.y));
} double multi(Point A,Point B,Point C)
{
return (B.x-A.x)*(C.x-A.x)+(B.y-A.y)*(C.y-A.y);
} //顺时针排序
void anticlockwise(Point p[],int n)
{
for(int i=0;i<n-2;i++)
{
double tmp=cross(p[i],p[i+1],p[i+2]);
if(tmp>eps) return;
else if(tmp<-eps)
{
reverse(p,p+n);
return;
}
}
} //计算C点到直线AB的最短距离
double Getdist(Point A,Point B,Point C)
{
if(dist(A,B)<eps) return dist(B,C);
if(multi(A,B,C)<-eps) return dist(A,C);
if(multi(B,A,C)<-eps) return dist(B,C);
return fabs(cross(A,B,C)/dist(A,B));
} //求一条直线的两端点到另外一条直线的距离,反过来一样,共4种情况
double MinDist(Point A,Point B,Point C,Point D)
{
return min(min(Getdist(A,B,C),Getdist(A,B,D)),min(Getdist(C,D,A),Getdist(C,D,B)));
} double Solve(Point P[],Point Q[],int n,int m)
{
int yminP=0,ymaxQ=0;
for(int i=0;i<n;i++)
if(P[i].y<P[yminP].y)
yminP=i;
for(int i=0;i<m;i++)
if(Q[i].y>Q[ymaxQ].y)
ymaxQ=i;
P[n]=P[0];
Q[m]=Q[0];
double tmp,ans=INF;
for(int i=0;i<n;i++)
{
while(tmp=cross(P[yminP+1],Q[ymaxQ+1],P[yminP])-cross(P[yminP+1],Q[ymaxQ],P[yminP])>eps)
ymaxQ=(ymaxQ+1)%m;
if(tmp<-eps) ans=min(ans,Getdist(P[yminP],P[yminP+1],Q[ymaxQ]));
else ans=min(ans,MinDist(P[yminP],P[yminP+1],Q[ymaxQ],Q[ymaxQ+1]));
yminP=(yminP+1)%n;
}
return ans;
} int main()
{
int n,m;
while(cin>>n>>m)
{
if(n==0&&m==0) break;
for(int i=0;i<n;i++)
cin>>P[i].x>>P[i].y;
for(int i=0;i<m;i++)
cin>>Q[i].x>>Q[i].y;
anticlockwise(P,n);
anticlockwise(Q,m);
printf("%.5lf\n",min(Solve(P,Q,n,m),Solve(Q,P,m,n)));
}
return 0;
}

 

POJ3608(旋转卡壳--求两凸包的最近点对距离)的更多相关文章

  1. 「POJ-3608」Bridge Across Islands (旋转卡壳--求两凸包距离)

    题目链接 POJ-3608 Bridge Across Islands 题意 依次按逆时针方向给出凸包,在两个凸包小岛之间造桥,求最小距离. 题解 旋转卡壳的应用之一:求两凸包的最近距离. 找到凸包 ...

  2. 旋转卡壳求两个凸包最近距离poj3608

    #include <iostream> #include <cmath> #include <vector> #include <string.h> # ...

  3. POJ 3608 Bridge Across Islands(旋转卡壳,两凸包最短距离)

    Bridge Across Islands Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7202   Accepted:  ...

  4. poj 3608(旋转卡壳求解两凸包之间的最短距离)

    Bridge Across Islands Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9768   Accepted: ...

  5. poj 3608 旋转卡壳求不相交凸包最近距离;

    题目链接:http://poj.org/problem?id=3608 #include<cstdio> #include<cstring> #include<cmath ...

  6. POJ2187 旋转卡壳 求最长直径

    给定平面上的一些散点集,求最远两点距离的平方值. 题解: 旋转卡壳求出凸包,然后根据单调性,求出最远两点的最大距离 #pragma GCC optimize(2) #pragma G++ optimi ...

  7. poj 2187 Beauty Contest , 旋转卡壳求凸包的直径的平方

    旋转卡壳求凸包的直径的平方 板子题 #include<cstdio> #include<vector> #include<cmath> #include<al ...

  8. POJ 2187 Beauty Contest【旋转卡壳求凸包直径】

    链接: http://poj.org/problem?id=2187 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...

  9. UVa 1453 - Squares 旋转卡壳求凸包直径

    旋转卡壳求凸包直径. 参考:http://www.cppblog.com/staryjy/archive/2010/09/25/101412.html #include <cstdio> ...

随机推荐

  1. 微软有完善的WP开发教程

    微软的Windows Phone 开发者中心 地址:http://dev.windowsphone.com/zh-cn/develop由于这里的教程非常完善,大家直要把开发者中心的内容看完就可以了,所 ...

  2. 【原】Oracle查询指定表里的触发器

    select * from all_triggers WHERE table_name='表名'

  3. linux 正则表达式深度解析

    正则表达式的文法分为3种标准:BRE.ERE 和 ARE.其中 BER 和 ERE 属于 POSIX 标准,ARE 则是由各家定义的扩展   简介 大体来讲,正则表达式的文法分为3种标准:BRE.ER ...

  4. Linux vi 中搜索关键字

    当你用vi打开一个文件后,因为文件太长,如何才能找到你所要查找的关键字呢? 在vi里可没有菜单-〉查找 不过没关系,可以在命令模式下敲斜杆( / )这时在状态栏(也就是屏幕左下脚)就出现了 “/” 然 ...

  5. sublime text2 中文乱码的解决办法

    1.安装Sublime Package Control 在Sublime Text 2上用Ctrl+-打开控制台并在里面输入以下代码,Sublime Text 2就会自动安装Package Contr ...

  6. C语言创建一个窗口提示

    打开Vs2012[我的是2012] /* X下面这些东西并没有什么用... 就不改了用2013 2015都一样 当然 devC++ 还有最原始的那个vc6.0也都是可以的. 编译环境遇到了相关问题网上 ...

  7. linux whereis which

    whereis 命令只能用于程序名的搜索,而且只搜索二进制文件(参数-b).man说明文件(参数-m)和源代码文件(参数-s). [root@localhost ~]# whereis svn svn ...

  8. 语音合成,语音播报功能(系统)-b

    第一次接触语音合成,只实现了很简单的功能,记录一下,以后免得去网上四处找资料 最近在做高德地图导航的时候有个语音播报的功能,高德sdk已经提供了要语音的字符串.我要做的就是把这些字符串读出声音来即可. ...

  9. failed to lazily initialize a collection of role

    可能修复了一个重大的偶尔发生的几乎难以察觉的并且到现在我也没能理解的bug...有时(经常)调用updateNotNullfield方法(原理是从数据库中get一个对象,然后把原对象中非空的值赋予它, ...

  10. GodSon Easyui 结合Pluplaod插件的文件分割上传

    自己整理了一个文件分割上传的实例,提供研究学习使用. 在线查看效果       下载该资源pluplaod文件分割上传Demo.zip 简介: 首先,进入页面会看到下面的效果: 点击一个按钮,出现如图 ...