Title:

https://leetcode.com/problems/combination-sum/

Given a set of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.

The same repeated number may be chosen from C unlimited number of times.

Note:

  • All numbers (including target) will be positive integers.
  • Elements in a combination (a1, a2, … , ak) must be in non-descending order. (ie, a1 ≤ a2 ≤ … ≤ ak).
  • The solution set must not contain duplicate combinations.

For example, given candidate set 2,3,6,7 and target 7
A solution set is: 
[7] 
[2, 2, 3]

思路:基本是DFS的思想。将数组排序之后,每次对当前的这个元素与target比较,看最多能塞进去几个当前的这个元素。

如果数组有相同元素,可以采用注释掉的语句进行去重,或者在递归函数中去重。不去重也不会影响结果。(去掉蓝色的也没有影响,不过蓝色的是为了去重)

注意结束条件: 一般都是index == size(),但这边应该是0 == target

for (int i = (target / candidates[idx]); i >= 0; i--) {
record.push_back(candidates[idx]);
}
用来计算最多压入几个当前元素。
for (int i = (target / candidates[idx]); i >= 0; i--) {
record.pop_back();
searchAns(ans, record, candidates, target - i * candidates[idx], idx + 1,candidates[idx]);
//record.pop_back();
}
弹出栈,再进入递归函数。注意,有可能这个元素就不要压入,所以是i >=0
class Solution {
public:
vector<vector<int> > combinationSum(vector<int> &candidates, int target) {
// Start typing your C/C++ solution below
// DO NOT write int main() function
sort(candidates.begin(), candidates.end());
/*vector<int>::iterator pos = unique(candidates.begin(), candidates.end());
candidates.erase(pos, candidates.end());*/
vector<vector<int> > ans;
vector<int> record;
searchAns(ans, record, candidates, target, 0,-1);
return ans;
} private:
void searchAns(vector<vector<int> > &ans, vector<int> &record, vector<int> &candidates, int target, int idx, int preValue) {
if (target == 0) {
ans.push_back(record);
return;
}
if ( idx == candidates.size() || candidates[idx] > target || preValue == candidates[idx]) {
return;
}
for (int i = (target / candidates[idx]); i >= 0; i--) {
record.push_back(candidates[idx]);
}
for (int i = (target / candidates[idx]); i >= 0; i--) {
record.pop_back();
searchAns(ans, record, candidates, target - i * candidates[idx], idx + 1,candidates[idx]);
//record.pop_back();
}
}
};

Title:

https://leetcode.com/problems/combination-sum-ii/

Given a collection of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.

Each number in C may only be used once in the combination.

Note:

  • All numbers (including target) will be positive integers.
  • Elements in a combination (a1, a2, … , ak) must be in non-descending order. (ie, a1 ≤ a2 ≤ … ≤ ak).
  • The solution set must not contain duplicate combinations.

For example, given candidate set 10,1,2,7,6,1,5 and target 8
A solution set is: 
[1, 7] 
[1, 2, 5] 
[2, 6] 
[1, 1, 6]

思路:DFS搜索。与Combination Sum中的不同,每次搜索的备选项是从当前index开始到数组结束的元素。不包括重复元素。

class Solution {
public:
vector<vector<int> > results;
vector<vector<int> > combinationSum2(vector<int> &num, int target) { if (num.empty() || num.size() == 0)
return results;
sort(num.begin(),num.end());
vector<int> result;
combine(num,0,target,result);
return results;
} void combine(vector<int> &num,int startIndex, int target,vector<int> &result){
if (0 == target){
//cout<<"add"<<endl;
results.push_back(result);
return ;
}
if (0 > target)
return ;
for (int i = startIndex; i < num.size(); i++){
if (i > startIndex && num[i] == num[i-1])
continue;
result.push_back(num[i]);
combine(num,i+1,target-num[i],result);
result.pop_back();
}
}
};

Title:

https://leetcode.com/problems/combination-sum-iii/

Find all possible combinations of k numbers that add up to a number n, given that only numbers from 1 to 9 can be used and each combination should be a unique set of numbers.

Ensure that numbers within the set are sorted in ascending order.

Example 1:

Input: k = 3, n = 7

Output:

[[1,2,4]]

Example 2:

Input: k = 3, n = 9

Output:

[[1,2,6], [1,3,5], [2,3,4]]
class Solution {
public:
vector<vector<int>> combinationSum3(int k, int n) {
vector<vector<int> > results;
if ( k < || n < )
return results;
vector<int> result;
DFS(results,result,,k,n,);
return results;
}
void DFS(vector<vector<int> >& results, vector<int>& result, int index, int k, int target, int preVal){
if (index == k && target == ){
results.push_back(result);
return ;
}
if (index == k || target <= preVal)
return ;
for (int i = preVal+; i < ; i++){
result.push_back(i);
DFS(results,result,index+,k,target-i,i);
result.pop_back();
}
}
};

LeetCode: Combination Sum I && II && III的更多相关文章

  1. Leetcode 39 40 216 Combination Sum I II III

    Combination Sum Given a set of candidate numbers (C) and a target number (T), find all unique combin ...

  2. LeetCode:Combination Sum I II

    Combination Sum Given a set of candidate numbers (C) and a target number (T), find all unique combin ...

  3. combination sum(I, II, III, IV)

    II 简单dfs vector<vector<int>> combinationSum2(vector<int>& candidates, int targ ...

  4. [LeetCode] Combination Sum III 组合之和之三

    Find all possible combinations of k numbers that add up to a number n, given that only numbers from ...

  5. [LeetCode] Combination Sum II 组合之和之二

    Given a collection of candidate numbers (C) and a target number (T), find all unique combinations in ...

  6. LeetCode Combination Sum III

    原题链接在这里:https://leetcode.com/problems/combination-sum-iii/ 题目: Find all possible combinations of k n ...

  7. LeetCode: Combination Sum II 解题报告

    Combination Sum II Given a collection of candidate numbers (C) and a target number (T), find all uni ...

  8. 子集系列(二) 满足特定要求的子集,例 [LeetCode] Combination, Combination Sum I, II

    引言 既上一篇 子集系列(一) 后,这里我们接着讨论带有附加条件的子集求解方法. 这类题目也是求子集,只不过不是返回所有的自己,而往往是要求返回满足一定要求的子集. 解这种类型的题目,其思路可以在上一 ...

  9. [LeetCode] Combination Sum IV 组合之和之四

    Given an integer array with all positive numbers and no duplicates, find the number of possible comb ...

随机推荐

  1. 【转】欧拉回路&特殊图下的哈密顿回路题集

    转自:http://blog.csdn.net/shahdza/article/details/7779385 欧拉回路[HDU]1878 欧拉回路 判断3018 Ant Trip 一笔画问题1116 ...

  2. 剑指offer--面试题19

    题目:求二叉树镜像 根据作者思路,自己所写代码如下: void BinaryTreeMirror(BinaryTreeNode* pRoot) { if(pRoot == NULL) return; ...

  3. C#textbox右击弹出菜单

    给窗口体拖一个contextMenuTrip 控件,也就是右键菜单控件,这时你就不要给这个控件写内容了, 选中textBox 然后点属性窗口,把它的contextMenuTrip 属性选中你刚才托的那 ...

  4. [设计模式] 21 策略模式 Strategy

    在GOF的<设计模式:可复用面向对象软件的基础>一书中对策略模式是这样说的:定义一系列的算法,把它们一个个封装起来,并且使它们可相互替换.该模式使得算法可独立于使用它的客户而变化. 策略模 ...

  5. Win 7怎样拒绝所有可移动存储设备的所有权限

    在Windows 7中,我们可拒绝对任何可移动存储类的权限.下面让我来教大家怎样在组策略中启用“所有可移动存储类:拒绝所有权限”策略,具体操作步骤如下所述: 步骤/方法 在开始搜索框中键入“gpedi ...

  6. Google 网站打不开

    http://209.116.186.246/ http://91.213.30.153/  (2014年6月30日 新增) https://wen.lu/ (2014年6月30日 新增,注意下是ht ...

  7. java001-Helloworld

    public class test05 { public static void main(String[] args) { System.out.println("Hello World! ...

  8. ***iOS 项目的目录结构能看出你的开发经验

    最近有师弟去面试iOS开发,他谈论到,面试官竟然问他怎么分目录结构的,而且还具体问到每个子目录的文件名. 目录结构确实很重要,面试官问他这些无疑是想窥探他的开发经验.清晰的目录结构,可让人一眼知道对应 ...

  9. hdu 4335 What is N?

    此题用到的公式:a^b%c=a^(b%phi(c)+phi(c))%c (b>=phi(c)). 1.当n!<phi(p)时,直接暴力掉: 2.当n!>=phi(p) &&a ...

  10. iptables 代理设置

    代理: 开启转发:echo 1 > /proc/sys/net/ipv4/ip_forward iptables -t nat -A POSTROUTING -s 192.168.1.0/24 ...