POJ 3419 Difference Is Beautiful(RMQ变形)
题意:N个数,M个询问,每个询问为一个区间,求区间最长连续子序列,要求每个数都不同(perfect sequence,简称PS)。
题解:很容易求出以每个数为结尾的ps,也就是求区间的最大值。有一个不同就是长度可能会超出询问范围,所以先对PS的首位置二分,然后RMQ。注意一点,序列有可能出现负数,所以先加最大值变为正数。其实也不算变形,挺裸的……
这题卡线段树,然而我只会线段树,心塞……
代码(树状数组):
#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
using namespace std;
const int N = ; int a[N], pos[N], len[N], nt[N]; #define lowbit(x) ((x)&(-x))
int idx[N]; void init(int n)
{
for(int i=;i<=n;i++) {
idx[i] = len[i];
for(int j=;j<lowbit(i);j<<=){
idx[i]=max(idx[i],idx[i-j]);
}
}
} int query(int l, int r)
{
int ans=len[r];
while(true) {
ans=max(ans,len[r]);
if(r==l) break;
for(r-=;r-l>=lowbit(r);r-=lowbit(r)){
ans=max(ans,idx[r]);
}
}
return ans;
} int main()
{
int n, m;
while (~scanf("%d%d", &n, &m)) {
for (int i = ; i <= n; ++i) {
scanf("%d", &a[i]);
a[i] += ;
}
memset(pos, , sizeof pos);
nt[] = ;
for (int i = ; i <= n; ++i) {
nt[i] = max(nt[i-], pos[a[i]]+);//nt[i]以i为结尾的最长子序列的首端
len[i] = i-nt[i]+;
pos[a[i]] = i;
}
init(n); while (m--) {
int l, r;
scanf("%d%d", &l, &r); l++, r++;
int p = upper_bound(nt+, nt++n, l) - nt;
int ans = ;
if (p > r) {
printf("%d\n", r-l+);
continue;
}
if (p > l) ans = p-l;
ans = max(ans, query(p, r));
printf("%d\n", ans);
}
}
return ;
}
代码(ST算法):
#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
using namespace std;
const int N = ; int a[N], pos[N], len[N], nt[N];
int f[N][]; void init(int n)
{
// f[i,j]表示[i,i+2^j-1]区间最大值
// f[i,j]=max(d[i,j-1], d[i+2^(j-1),j-1])
for (int i = ; i <= n; ++i) f[i][] = len[i];
for (int j = ; (<<j) <= n; ++j)
for (int i = ; i+j- <= n; ++i)
f[i][j] = max(f[i][j-], f[i+(<<j-)][j-]);
} int query(int l, int r)
{
int k = ;
while ((<<k+ <= r-l+)) ++k;
return max(f[l][k], f[r-(<<k)+][k]);
} int main()
{
int n, m;
while (~scanf("%d%d", &n, &m)) {
for (int i = ; i <= n; ++i) {
scanf("%d", &a[i]);
a[i] += ;
}
memset(pos, , sizeof pos);
nt[] = ;
for (int i = ; i <= n; ++i) {
nt[i] = max(nt[i-], pos[a[i]]+);//nt[i]以i为结尾的最长子序列的首端
len[i] = i-nt[i]+;
pos[a[i]] = i;
}
init(n); while (m--) {
int l, r;
scanf("%d%d", &l, &r); l++, r++;
int p = upper_bound(nt+, nt++n, l) - nt;
int ans = ;
if (p > r) {
printf("%d\n", r-l+);
continue;
}
if (p > l) ans = p-l;
ans = max(ans, query(p, r));
printf("%d\n", ans);
}
}
return ;
}
还有一种网上流传的算法,类似kmp。想法很巧妙,但是最坏复杂度貌似是O(n^2),不过也能A这道题。而且速度不必上面慢。数据水吧~
nt[i]记录想要字串中含有a[(i+1)-pos[i+1]]的最大位置。
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
const int N = ; int a[N], pos[N], len[N], nt[N]; int main()
{
int n, m;
while (~scanf("%d%d", &n, &m)) {
for (int i = ; i <= n; ++i) {
scanf("%d", a+i);
a[i] += ;
}
memset(pos, , sizeof pos);
len[] = ; nt[] = ;
for (int i = ; i <= n; ++i) {
if (len[i-]+ <= i-pos[a[i]]) {
len[i] = len[i-]+;
nt[i] = nt[i-];
} else {
len[i] = i-pos[a[i]];
nt[i] = i-;
}
pos[ a[i] ] = i;
//printf("%d %d %d\n", len[i], nt[i], pos[a[i]]);
}
while (m--) {
int l, r;
scanf("%d%d", &l, &r); l++, r++;
int res = len[r];
if (res >= r-l+) {
printf("%d\n", r-l+);
continue;
}
while (nt[r] > ) {
r = nt[r];
res = max(res, min(len[r], r-l+));
if (res >= r-l+) {
break;
}
}
printf("%d\n", res);
}
}
return ;
}
POJ 3419 Difference Is Beautiful(RMQ变形)的更多相关文章
- POJ 3419 Difference Is Beautiful(RMQ+二分 或者 模拟)
Difference Is Beautiful Time Limit:5000MS Memory Limit:65536KB 64bit IO Format:%lld & %l ...
- POJ 3419 Difference Is Beautiful (DP + 二分 + rmq)
题意:给n个数(n<=200000),每个数的绝对值不超过(10^6),有m个查询(m<=200000),每次查询区间[a,b]中连续的没有相同数的的最大长度. 析:由于n太大,无法暴力, ...
- POJ 3419 Difference Is Beautiful
先处理出每一个i位置向左最远能到达的位置L[i].每一次询问,要找到L,R区间中的p位置,p位置左边的L[i]都是小于L的,p位置开始,到R位置,L[i]都大于等于L,对于前者,最大值为p-L,后者求 ...
- poj 3368 Frequent values(RMQ)
题目:http://poj.org/problem?id=3368 题意:给定n个数,顺序为非下降,询问某个区间内的数出现最多的数的 出现次数.. 大白书上的 例题..算是RMQ变形了, 对 原数组重 ...
- POJ 3635 - Full Tank? - [最短路变形][手写二叉堆优化Dijkstra][配对堆优化Dijkstra]
题目链接:http://poj.org/problem?id=3635 题意题解等均参考:POJ 3635 - Full Tank? - [最短路变形][优先队列优化Dijkstra]. 一些口胡: ...
- POJ 2019 Cornfields [二维RMQ]
题目传送门 Cornfields Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 7963 Accepted: 3822 ...
- POJ 1696 - Space Ant 凸包的变形
Technorati Tags: POJ,计算几何,凸包 初学计算几何,引入polygon后的第一个挑战--凸包 此题可用凸包算法做,只要把压入凸包的点从原集合中排除即可,最终形成图形为螺旋线. 关于 ...
- poj 3264 Balanced Lineup(RMQ裸题)
Balanced Lineup Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 43168 Accepted: 20276 ...
- POJ 3264 Balanced Lineup(RMQ)
点我看题目 题意 :N头奶牛,Q次询问,然后给你每一头奶牛的身高,每一次询问都给你两个数,x y,代表着从x位置上的奶牛到y位置上的奶牛身高最高的和最矮的相差多少. 思路 : 刚好符合RMQ的那个求区 ...
随机推荐
- samba配置smb.conf
[share] path = /home/phinecos/share available = yes browsealbe = yes public = ye ...
- 将 Qt 5.6 集成至 VS2015
摘要: 由于VS2015不再支持addin,所以要用其他手段. 这里给出64位系统下的安装步骤,32位类似. 一.安装VS2015 过程略.值得注意的是要选择需要安装的内容,既然要用Qt,那么C++相 ...
- POJ1035——Spell checker(字符串处理)
Spell checker DescriptionYou, as a member of a development team for a new spell checking program, ar ...
- POJ2993——Help Me with the Game(字符串处理+排序)
Help Me with the Game DescriptionYour task is to read a picture of a chessboard position and print i ...
- python-append()方法
append() 方法向列表的尾部添加一个新的元素.只接受一个参数. >>> mylist = [1,2,3,4] >>> mylist [1, 2, 3, 4] ...
- node.js模块之fs文件系统
fs 模块是文件操作的封装,它提供了文件的读取.写入.更名.删除.遍历目录.链接等 POSIX 文件系统操作.与其他模块不同的是,fs 模块中所有的操作都提供了异步的和同步的两个版本, 例如读取文件内 ...
- 新LNMP环境,但是SESSION跨页面或者刷新 session丢失
唠叨:本地WAMP做了一个微信项目,一切OK,昨天需要在LINUX架设一套LNMP环境.但是,在架设代码的时候,登录总是不成功~~~ 最终解决:权限 其实,作为一个程序猿,只要涉及到服务器内容,都应该 ...
- WinAPI——钩子函数大全2
CallNextHookEx 函数功能:该函数发送挂钩信息给当前挂钩链中的下一个挂钩处理过程,一个挂钩处理过程可在对该挂钩信息进行处理之前或之后调用本函数. 函数原形:LRESULT CallNext ...
- git clone 出错SSL certificate problem, verify that the CA cert is OK.
先调用这个 export GIT_SSL_NO_VERIFY=true 之后再执行git clone
- 请用一句话概括JSONP
服务器调用客户端的函数(即回调函数),在客户端就能拿到服务端传入的参数(即返回结果)