欧拉回路

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 10239    Accepted Submission(s):
3739

Problem Description
欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到起点的一条回路。现给定一个图,问是否存在欧拉回路?
 
Input
测试输入包含若干测试用例。每个测试用例的第1行给出两个正整数,分别是节点数N ( 1 < N <
1000
)和边数M;随后的M行对应M条边,每行给出一对正整数,分别是该条边直接连通的两个节点的编号(节点从1到N编号)。当N为0时输入结
束。
 
Output
每个测试用例的输出占一行,若欧拉回路存在则输出1,否则输出0。
 
Sample Input
3 3
1 2
1 3
2 3
3 2
1 2
2 3
0
 
#include<stdio.h>
#include<string.h>
#define MAX 1100
int set[MAX];
int path[MAX];
int find(int fa)
{
int t;
int ch=fa;
while(fa!=set[fa])
fa=set[fa];
while(ch!=fa)
{
t=set[ch];
set[ch]=fa;
ch=t;
}
return fa;
}
void mix(int x,int y)
{
int fx,fy;
fx=find(x);
fy=find(y);
if(fx!=fy)
set[fx]=fy;
}
int main()
{
int n,m,j,i,s,sum,a,b,wrong;
while(scanf("%d",&n)&&n!=0)
{
scanf("%d",&m);
memset(path,0,sizeof(path));
// memset(chu,0,sizeof(chu));
for(i=1;i<=n;i++)
set[i]=i;
for(i=1;i<=m;i++)
{
scanf("%d%d",&a,&b);
path[b]++;
path[a]++;
mix(a,b);
}
sum=0;wrong=0;
for(i=1;i<=n;i++)
{
if(set[i]==i)
{
sum++;
if(sum>1)
{
wrong=1;
break;
}
}
if(path[i]!=2)
{
wrong=1;
break;
}
}
if(wrong)
printf("0\n");
else
printf("1\n");
}
return 0;
}

  

 
Sample Output
1
0

hdoj 1878 欧拉回路的更多相关文章

  1. hdoj 1878 欧拉回路(无向图欧拉回路+并查集)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1878 思路分析:该问题给定一个无向图,要求判断该无向图是否存在欧拉回路:无向图判断存在欧拉回路的两个必 ...

  2. HDOJ 1878 欧拉回路 nyoj 42一笔画问题

    #include<cstdio> #include<cstring> ]; int find(int x) { if(visited[x]!=x) return find(vi ...

  3. HDU 1878 欧拉回路(判断欧拉回路)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1878 题目大意:欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到起点的一条回路.现给定一 ...

  4. HDU 1878 欧拉回路

    并查集水题. 一个图存在欧拉回路的判断条件: 无向图存在欧拉回路的充要条件 一个无向图存在欧拉回路,当且仅当该图所有顶点度数都是偶数且该图是连通图. 有向图存在欧拉回路的充要条件 一个有向图存在欧拉回 ...

  5. HDU 1878 欧拉回路 图论

    解题报告:题目大意,给出一个无向图,判断图中是否存在欧拉回路. 判断一个无向图中是否有欧拉回路有一个充要条件,就是这个图中不存在奇度定点,然后还要判断的就是连通分支数是否为1,即这个图是不是连通的,这 ...

  6. HDU 1878 欧拉回路(无向图的欧拉回路)

    欧拉回路 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submis ...

  7. HDU - 1878 欧拉回路 (连通图+度的判断)

    欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到起点的一条回路.现给定一个图,问是否存在欧拉回路? Input 测试输入包含若干测试用例.每个测试用例的第1行给出两个正整数,分别是节点数 ...

  8. hdu 1878 欧拉回路(联通<并查集> + 偶数点)

    欧拉回路Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  9. 【转】欧拉回路&特殊图下的哈密顿回路题集

    转自:http://blog.csdn.net/shahdza/article/details/7779385 欧拉回路[HDU]1878 欧拉回路 判断3018 Ant Trip 一笔画问题1116 ...

随机推荐

  1. Linux信号列表

    我们运行如下命令,可看到Linux支持的信号列表: ~$ kill -l1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL5) SIGTRAP 6) SIGABRT 7) ...

  2. 将OutLook.exe注册为服务,让其一直保持开启状态

    类似于TaobaoProtect.exe是由TBSecSvc服务启动的 http://stackoverflow.com/questions/3582108/create-windows-servic ...

  3. js控制元素的显示与隐藏

    <body class="easyui-layout"> <div id = "centerId" data-options="re ...

  4. poj 1265 Area( pick 定理 )

    题目:http://poj.org/problem?id=1265 题意:已知机器人行走步数及每一步的坐标   变化量 ,求机器人所走路径围成的多边形的面积.多边形边上和内部的点的数量. 思路:1.以 ...

  5. openSession()和getCureentSession()的区别

    openSession():永远是打开一个新的session getCureentSession():如果当前环境有session,则取得原来已经存在的session,如果没有,则创建一个新的sess ...

  6. php 类 成员变量 $this->name='abc'

    <?php class test { public function getName() { $this->name='abc'; echo $this->name; } }$a=n ...

  7. poj3321

    树映射到树状数组上 非常好的题目,给了我很多启发 题目要求动态求一个棵子树的节点个数 不禁联想到了前缀和,只要我们能用一个合适的优先级表示每个顶点,那么就好做了 我们可以考虑将子树表示成区间的形式 这 ...

  8. linux下nagios的安装与部署

    一.Nagios简介 Nagios是一款开源的电脑系统和网络监视工具,能有效监控Windows.Linux和Unix的主机状态,交换机路由器等网络设置,打印机等.在系统或服务状态异常时发出邮件或短信报 ...

  9. MySQL查询大小写是否敏感问题分析

    mysql数据库在做查询时候,有时候是英文字母大小写敏感的,有时候又不是的,主要是由mysql的字符校验规则的设置决定的,通常默认是不支持的大小写字母敏感的.  1. 什么是字符集和校验规则? 字符集 ...

  10. MAC虚拟机NAT方式共享上网设置

    有部分FY需要,我写一下我的方法吧,当初安装完MAC后,无法上网,网络搜索用的是HOST-only方法,试了几次都没有成功,后来尝试NAT方法,发现很简单. 我的主机系统:win7 64位,自动获取I ...