leetcode@ [129] Sum Root to Leaf Numbers (DFS)
https://leetcode.com/problems/sum-root-to-leaf-numbers/
Given a binary tree containing digits from 0-9 only, each root-to-leaf path could represent a number.
An example is the root-to-leaf path 1->2->3 which represents the number 123.
Find the total sum of all root-to-leaf numbers.
For example,
1
/ \
2 3
The root-to-leaf path 1->2 represents the number 12.
The root-to-leaf path 1->3 represents the number 13.
Return the sum = 12 + 13 = 25.
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
void travel(vector<vector<int> >& nums, vector<int>& load, TreeNode* root) {
if(!(root->left) && !(root->right)) {
nums.push_back(load);
return;
} if(root->left) {
load.push_back(root->left->val);
travel(nums, load, root->left);
load.pop_back();
}
if(root->right) {
load.push_back(root->right->val);
travel(nums, load, root->right);
load.pop_back();
}
}
int sumNumbers(TreeNode* root) {
if(root == NULL) return ; vector<vector<int> > nums;
vector<int> load;
int res = ; load.push_back(root->val);
travel(nums, load, root); for(int i=; i<nums.size(); ++i) {
int rhs = ;
for(int j=; j<nums[i].size(); ++j) {
rhs = rhs * + nums[i][j];
}
res += rhs;
}
return res;
}
};
leetcode@ [129] Sum Root to Leaf Numbers (DFS)的更多相关文章
- [LeetCode] 129. Sum Root to Leaf Numbers 求根到叶节点数字之和
Given a binary tree containing digits from 0-9 only, each root-to-leaf path could represent a number ...
- leetcode 129. Sum Root to Leaf Numbers ----- java
Given a binary tree containing digits from 0-9 only, each root-to-leaf path could represent a number ...
- [LeetCode] 129. Sum Root to Leaf Numbers 解题思路
Given a binary tree containing digits from 0-9 only, each root-to-leaf path could represent a number ...
- Java for LeetCode 129 Sum Root to Leaf Numbers
Given a binary tree containing digits from 0-9 only, each root-to-leaf path could represent a number ...
- Leetcode#129 Sum Root to Leaf Numbers
原题地址 二叉树的遍历 代码: vector<int> path; int sumNumbers(TreeNode *root) { if (!root) ; ; path.push_ba ...
- LeetCode 129. Sum Root to Leaf Numbers 动态演示
树的数值为[0, 9], 每一条从根到叶子的路径都构成一个整数,(根的数字为首位),求所有构成的所有整数的和 深度优先搜索,通过一个参数累加整数 class Solution { public: vo ...
- [LeetCode]129. Sum Root to Leaf Numbers路径数字求和
DFS的标准形式 用一个String记录路径,最后判断到叶子时加到结果上. int res = 0; public int sumNumbers(TreeNode root) { if (root== ...
- 【LeetCode】129. Sum Root to Leaf Numbers 解题报告(Python)
[LeetCode]129. Sum Root to Leaf Numbers 解题报告(Python) 标签(空格分隔): LeetCode 题目地址:https://leetcode.com/pr ...
- 【LeetCode】129. Sum Root to Leaf Numbers (2 solutions)
Sum Root to Leaf Numbers Given a binary tree containing digits from 0-9 only, each root-to-leaf path ...
随机推荐
- MySQL在windows和linux下的表名大小写问题
MySQL在windows下是不区分大小写的,将script文件导入MySQL后表名也会自动转化为小写,结果再想要将数据库导出放到linux服务 器中使用时就出错了.因为在linux下表名区分大小写而 ...
- 【疯狂Java学习笔记】【理解面向对象】
[学习笔记]1.Java语言是纯粹的面向对象语言,这体现在Java完全支持面向对象的三大基本特征:封装.继承.多态.抽象也是面向对象的重要组成部分,不过它不是面向对象的特征之一,因为所有的编程语言都需 ...
- SPRING IN ACTION 第4版笔记-第九章Securing web applications-005-Applying LDAP-backed authentication
一. 1.This method is the LDAP analog to jdbcAuthentication() @Override protected void configure(Aut ...
- 【HDOJ】5296 Annoying problem
LCA+RMQ.挺不错的一道题目. 思路是如何通过LCA维护费用.当加入新的点u是,费用增量为dis[u]-dis[lca(u, lower_u)] - dis[lca(u, greater_u)] ...
- [ffmpeg 扩展第三方库编译系列] 关于需要用到cmake 创建 mingw32编译环境问题
我在这里给出我编译的例子 cmake -G"MinGW Makefiles" -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=& ...
- pylinter could not automatically determined the path to `lint.py`
先关闭Sublime Text 1) 到官网先下载pylinter,http://www.logilab.org/project/pylint,然后解压缩,拷贝到C盘,目录为C:\pylint-1.0 ...
- 1019.Line Painting(线段树 离散化)
1019 离散化都忘记怎么写了 注意两个端点 离散化后用线段树更新区间 混色为-1 黑为2 白为1 因为N不大 最后直接循环标记这一段的颜色查找 #include <iostream> ...
- grep 同时满足多个关键字和满足任意关键字
grep 同时满足多个关键字和满足任意关键字 ① grep -E "word1|word2|word3" file.txt 满足任意条件(word1.word2和word ...
- struts2的action中获得request response session 对象
在struts2中有两种方式可以得到这些对象 1.非IoC方式 要获得上述对象,关键Struts 2中com.opensymphony.xwork2.ActionContext类.我们可以通过它的静态 ...
- bzoj1385: [Baltic2000]Division expression
欧几里得算法.可以发现规律,a[2]作为分母,其他作为分子,必定是最好的选择.判断是否为整数即可. #include<cstdio> #include<cstring> #in ...