Mongodb 和 普通数据库 各种属性 和语句 的对应
SQL to MongoDB Mapping Chart
In addition to the charts that follow, you might want to consider the Frequently Asked Questions section for a selection of common questions about MongoDB.
Terminology and Concepts
The following table presents the various SQL terminology and concepts and the corresponding MongoDB terminology and concepts.
| SQL Terms/Concepts | MongoDB Terms/Concepts |
|---|---|
| database | database |
| table | collection |
| row | document or BSON document |
| column | field |
| index | index |
| table joins | embedded documents and linking |
|
primary key Specify any unique column or column combination as primary key. |
In MongoDB, the primary key is automatically set to the_id field. |
| aggregation (e.g. group by) |
aggregation pipeline See the SQL to Aggregation Mapping Chart. |
Executables
The following table presents some database executables and the corresponding MongoDB executables. This table is not meant to be exhaustive.
| MongoDB | MySQL | Oracle | Informix | DB2 | |
|---|---|---|---|---|---|
| Database Server | mongod | mysqld | oracle | IDS | DB2 Server |
| Database Client | mongo | mysql | sqlplus | DB-Access | DB2 Client |
Examples
The following table presents the various SQL statements and the corresponding MongoDB statements. The examples in the table assume the following conditions:
The SQL examples assume a table named users.
The MongoDB examples assume a collection named users that contain documents of the following prototype:
{
_id: ObjectId("509a8fb2f3f4948bd2f983a0"),
user_id: "abc123",
age: 55,
status: 'A'
}
Create and Alter
The following table presents the various SQL statements related to table-level actions and the corresponding MongoDB statements.
| SQL Schema Statements | MongoDB Schema Statements |
|---|---|
CREATE TABLE users ( |
Implicitly created on first insert() operation. The primary key _id is automatically added if _id field is not specified. db.users.insert( {
However, you can also explicitly create a collection: db.createCollection("users")
|
ALTER TABLE users |
Collections do not describe or enforce the structure of its documents; i.e. there is no structural alteration at the collection level. However, at the document level, update() operations can add fields to existing documents using the $set operator. db.users.update( |
ALTER TABLE users |
Collections do not describe or enforce the structure of its documents; i.e. there is no structural alteration at the collection level. However, at the document level, update() operations can remove fields from documents using the $unset operator. db.users.update( |
CREATE INDEX idx_user_id_asc |
db.users.createIndex( { user_id: 1 } )
|
CREATE INDEX |
db.users.createIndex( { user_id: 1, age: -1 } )
|
DROP TABLE users |
db.users.drop() |
For more information, see db.collection.insert(), db.createCollection(),db.collection.update(), $set, $unset, db.collection.createIndex(), indexes,db.collection.drop(), and Data Modeling Concepts.
Insert
The following table presents the various SQL statements related to inserting records into tables and the corresponding MongoDB statements.
| SQL INSERT Statements | MongoDB insert() Statements |
|---|---|
INSERT INTO users(user_id, |
db.users.insert( |
For more information, see db.collection.insert().
Select
The following table presents the various SQL statements related to reading records from tables and the corresponding MongoDB statements.
| SQL SELECT Statements | MongoDB find() Statements |
|---|---|
SELECT * |
db.users.find() |
SELECT id, |
db.users.find( |
SELECT user_id, status |
db.users.find( |
SELECT * |
db.users.find( |
SELECT user_id, status |
db.users.find( |
SELECT * |
db.users.find( |
SELECT * |
db.users.find( |
SELECT * |
db.users.find( |
SELECT * |
db.users.find( |
SELECT * |
db.users.find( |
SELECT * |
db.users.find( |
SELECT * |
db.users.find( { user_id: /bc/ } )
|
SELECT * |
db.users.find( { user_id: /^bc/ } )
|
SELECT * |
db.users.find( { status: "A" } ).sort( { user_id: 1 } )
|
SELECT * |
db.users.find( { status: "A" } ).sort( { user_id: -1 } )
|
SELECT COUNT(*) |
db.users.count() or db.users.find().count() |
SELECT COUNT(user_id) |
db.users.count( { user_id: { $exists: true } } )
or db.users.find( { user_id: { $exists: true } } ).count()
|
SELECT COUNT(*) |
db.users.count( { age: { $gt: 30 } } )
or db.users.find( { age: { $gt: 30 } } ).count()
|
SELECT DISTINCT(status) |
db.users.distinct( "status" ) |
SELECT * |
db.users.findOne() or db.users.find().limit(1) |
SELECT * |
db.users.find().limit(5).skip(10) |
EXPLAIN SELECT * |
db.users.find( { status: "A" } ).explain()
|
For more information, see db.collection.find(), db.collection.distinct(),db.collection.findOne(), $ne $and, $or, $gt, $lt, $exists, $lte, $regex, limit(),skip(), explain(), sort(), and count().
Update Records
The following table presents the various SQL statements related to updating existing records in tables and the corresponding MongoDB statements.
| SQL Update Statements | MongoDB update() Statements |
|---|---|
UPDATE users |
db.users.update( |
UPDATE users |
db.users.update( |
For more information, see db.collection.update(), $set, $inc, and $gt.
Delete Records
The following table presents the various SQL statements related to deleting records from tables and the corresponding MongoDB statements.
| SQL Delete Statements | MongoDB remove() Statements |
|---|---|
DELETE FROM users |
db.users.remove( { status: "D" } )
|
DELETE FROM users |
db.users.remove({})
|
For more information, see db.collection.remove().
SQL to Aggregation Mapping Chart
The aggregation pipeline allows MongoDB to provide native aggregation capabilities that corresponds to many common data aggregation operations in SQL.
The following table provides an overview of common SQL aggregation terms, functions, and concepts and the corresponding MongoDB aggregation operators:
| SQL Terms, Functions, and Concepts | MongoDB Aggregation Operators |
|---|---|
| WHERE | $match |
| GROUP BY | $group |
| HAVING | $match |
| SELECT | $project |
| ORDER BY | $sort |
| LIMIT | $limit |
| SUM() | $sum |
| COUNT() | $sum |
| join | No direct corresponding operator; however, the$unwind operator allows for somewhat similar functionality, but with fields embedded within the document. |
Examples
The following table presents a quick reference of SQL aggregation statements and the corresponding MongoDB statements. The examples in the table assume the following conditions:
The SQL examples assume two tables, orders and order_lineitem that join by theorder_lineitem.order_id and the orders.id columns.
The MongoDB examples assume one collection orders that contain documents of the following prototype:
{
cust_id: "abc123",
ord_date: ISODate("2012-11-02T17:04:11.102Z"),
status: 'A',
price: 50,
items: [ { sku: "xxx", qty: 25, price: 1 },
{ sku: "yyy", qty: 25, price: 1 } ]
}
| SQL Example | MongoDB Example | Description |
|---|---|---|
SELECT COUNT(*) AS count |
db.orders.aggregate( [ |
Count all records fromorders |
SELECT SUM(price) AS total |
db.orders.aggregate( [ |
Sum theprice field from orders |
SELECT cust_id, |
db.orders.aggregate( [ |
For each uniquecust_id, sum theprice field. |
SELECT cust_id, |
db.orders.aggregate( [ |
For each uniquecust_id, sum theprice field, results sorted by sum. |
SELECT cust_id, |
db.orders.aggregate( [ |
For each uniquecust_id,ord_dategrouping, sum the pricefield. Excludes the time portion of the date. |
SELECT cust_id, |
db.orders.aggregate( [ |
For cust_idwith multiple records, return thecust_id and the corresponding record count. |
SELECT cust_id, |
db.orders.aggregate( [ |
For each uniquecust_id,ord_dategrouping, sum the pricefield and return only where the sum is greater than 250. Excludes the time portion of the date. |
SELECT cust_id, |
db.orders.aggregate( [ |
For each uniquecust_id with status A, sum the pricefield. |
SELECT cust_id, |
db.orders.aggregate( [ |
For each uniquecust_id with status A, sum the pricefield and return only where the sum is greater than 250. |
SELECT cust_id, |
db.orders.aggregate( [ |
For each uniquecust_id, sum the corresponding line item qtyfields associated with the orders. |
SELECT COUNT(*) |
db.orders.aggregate( [ |
Mongodb 和 普通数据库 各种属性 和语句 的对应的更多相关文章
- oracle数据库查询日期sql语句(范例)、向已经建好的表格中添加一列属性并向该列添加数值、删除某一列的数据(一整列)
先列上我的数据库表格: c_date(Date格式) date_type(String格式) 2011-01-01 0 2012-03-07 ...
- MySQL、MongoDB、Redis 数据库之间的区别
NoSQL 的全称是 Not Only SQL,也可以理解非关系型的数据库,是一种新型的革命式的数据库设计方式,不过它不是为了取代传统的关系型数据库而被设计的,它们分别代表了不同的数据库设计思路. M ...
- MySQL、MongoDB、Redis 数据库之间的区别与使用(本章迭代更新)
MySQL.MongoDB.Redis 数据库之间的区别与使用 MySQL.MongoDB.Redis 数据库之间的区别与使用(本章迭代更新) update:2019年2月20日 15:21:19(本 ...
- MySQL、MongoDB、Redis数据库Docker镜像制作
MySQL.MongoDB.Redis数据库Docker镜像制作 在多台主机上进行数据库部署时,如果使用传统的MySQL的交互式的安装方式将会重复很多遍.如果做成镜像,那么我们只需要make once ...
- MongoDB和Redis-NoSQL数据库-文档型-内存型
1NoSQL简述 CAP(Consistency,Availabiity,Partitiontolerance)理论告诉我们,一个分布式系统不可能满足一致性,可用性和分区容错性这三个需求,最多只能同时 ...
- MongoDB非关系型数据库开发手册
一:NoSql数据库 什么是NoSQL? NoSQL,指的是非关系型的数据库.NoSQL有时也称作Not Only SQL的缩写,是对不同于传统的关系型数据库的数据库管理系统的统称. NoSQL用于超 ...
- 第12章—使用NoSQL数据库—使用MongoDB+Jpa操作数据库
使用MongoDB+Jpa操作数据库 SpringData还提供了对多种NoSQL数据库的支持,包括MongoDB;neo4j和redis.他不仅支持自动化的repository,还支持基于模板的数据 ...
- 【数据库】 SQL 常用语句之系统语法
[数据库] SQL 常用语句之系统语法 1. 获取取数据库服务器上所有数据库的名字 SELECT name FROM master.dbo.sysdatabases 2. 获取取数据库服务器上所有非系 ...
- MongoDB(三):数据库操作、集合操作
1. 数据库操作 看完前面的文章,大家应该把环境搭建好了,下面我们就开始学习MongoDB的一些基本操作了. 首先我们要了解的一些要点: MongoDB将数据存储为一个文档,数据结构由键值对(key= ...
随机推荐
- 深入浅出 Java 8 Lambda 表达式
摘要:此篇文章主要介绍 Java8 Lambda 表达式产生的背景和用法,以及 Lambda 表达式与匿名类的不同等.本文系 OneAPM 工程师编译整理. Java 是一流的面向对象语言,除了部分简 ...
- *[topcoder]GooseTattarrattatDiv1
http://community.topcoder.com/stat?c=problem_statement&pm=12730&rd=15701 这道题有点意思.首先把字符串变成回文, ...
- maven更新总结与tomcat发布方法总结
这些天来一直为不能直接把项目实时的发布到tomcat而费心思,项目使用了maven来组织,编译和运行,而maven插件的安装曾经有些问题,为此怀疑不能发布项目到tomcat是因为maven有问题,为些 ...
- 面试大总结之二:Java搞定面试中的二叉树题目
package BinaryTreeSummary; import java.util.ArrayList; import java.util.Iterator; import java.util.L ...
- P137、面试题23:从上往下打印二叉树
题目:从上往下打印出二叉树的每个结点,同一层的结点按照从左到右的顺序打印.例如输入如图的二叉树,则依次打印出8,6,10,5,7,9,11.(其实是按层遍历)二叉树结点的定义如下:struct Bin ...
- 散列表 (Hash table,也叫哈希表)
散列表是根据关键字(Key value)而直接访问在内存存储位置的数据结构.也就是说,它通过把键值通过一个函数的计算,映射到表中一个位置来访问记录,这加快了查找速度.这个映射函数称做散列函数,存放记录 ...
- 一步一步制作yaffs/yaffs2根文件系统(三)---使用glibc库构造 /lib
开发环境:Ubuntu 12.04 开发板:mini2440 256M NandFlash 64M SDRAM glibc库:点此下载 交叉编译器:arm-linux-gcc 4.4.3点此可下 ...
- Ubuntu忘记管理员密码
Ubuntu中不小心把管理员密码忘记了,真叫人头大. 现提供一个解决方案: 1.重启 Ubuntu 系统,按 Esc 进入GRUB 菜单界面,如下图: 2.选择recovery mode. (第二个) ...
- ubuntu查看命令
以非root用户更新系统 sudo: sudo是linux系统管理指令,是允许系统管理员让普通用户执行一些或者全部的root命令的一个工具,如halt,reboot,su等等.这样不仅减少了root用 ...
- NoSql数据库使用半年后在设计上面的一些心得 (转)
http://www.cnblogs.com/AllenDang/p/3507821.html NoSql数据库这个概念听闻许久了,也陆续看到很多公司和产品都在使用,优缺点似乎都被分析的清清楚楚.但我 ...