Mongodb 和 普通数据库 各种属性 和语句 的对应
SQL to MongoDB Mapping Chart
In addition to the charts that follow, you might want to consider the Frequently Asked Questions section for a selection of common questions about MongoDB.
Terminology and Concepts
The following table presents the various SQL terminology and concepts and the corresponding MongoDB terminology and concepts.
| SQL Terms/Concepts | MongoDB Terms/Concepts |
|---|---|
| database | database |
| table | collection |
| row | document or BSON document |
| column | field |
| index | index |
| table joins | embedded documents and linking |
|
primary key Specify any unique column or column combination as primary key. |
In MongoDB, the primary key is automatically set to the_id field. |
| aggregation (e.g. group by) |
aggregation pipeline See the SQL to Aggregation Mapping Chart. |
Executables
The following table presents some database executables and the corresponding MongoDB executables. This table is not meant to be exhaustive.
| MongoDB | MySQL | Oracle | Informix | DB2 | |
|---|---|---|---|---|---|
| Database Server | mongod | mysqld | oracle | IDS | DB2 Server |
| Database Client | mongo | mysql | sqlplus | DB-Access | DB2 Client |
Examples
The following table presents the various SQL statements and the corresponding MongoDB statements. The examples in the table assume the following conditions:
The SQL examples assume a table named users.
The MongoDB examples assume a collection named users that contain documents of the following prototype:
{
_id: ObjectId("509a8fb2f3f4948bd2f983a0"),
user_id: "abc123",
age: 55,
status: 'A'
}
Create and Alter
The following table presents the various SQL statements related to table-level actions and the corresponding MongoDB statements.
| SQL Schema Statements | MongoDB Schema Statements |
|---|---|
CREATE TABLE users ( |
Implicitly created on first insert() operation. The primary key _id is automatically added if _id field is not specified. db.users.insert( {
However, you can also explicitly create a collection: db.createCollection("users")
|
ALTER TABLE users |
Collections do not describe or enforce the structure of its documents; i.e. there is no structural alteration at the collection level. However, at the document level, update() operations can add fields to existing documents using the $set operator. db.users.update( |
ALTER TABLE users |
Collections do not describe or enforce the structure of its documents; i.e. there is no structural alteration at the collection level. However, at the document level, update() operations can remove fields from documents using the $unset operator. db.users.update( |
CREATE INDEX idx_user_id_asc |
db.users.createIndex( { user_id: 1 } )
|
CREATE INDEX |
db.users.createIndex( { user_id: 1, age: -1 } )
|
DROP TABLE users |
db.users.drop() |
For more information, see db.collection.insert(), db.createCollection(),db.collection.update(), $set, $unset, db.collection.createIndex(), indexes,db.collection.drop(), and Data Modeling Concepts.
Insert
The following table presents the various SQL statements related to inserting records into tables and the corresponding MongoDB statements.
| SQL INSERT Statements | MongoDB insert() Statements |
|---|---|
INSERT INTO users(user_id, |
db.users.insert( |
For more information, see db.collection.insert().
Select
The following table presents the various SQL statements related to reading records from tables and the corresponding MongoDB statements.
| SQL SELECT Statements | MongoDB find() Statements |
|---|---|
SELECT * |
db.users.find() |
SELECT id, |
db.users.find( |
SELECT user_id, status |
db.users.find( |
SELECT * |
db.users.find( |
SELECT user_id, status |
db.users.find( |
SELECT * |
db.users.find( |
SELECT * |
db.users.find( |
SELECT * |
db.users.find( |
SELECT * |
db.users.find( |
SELECT * |
db.users.find( |
SELECT * |
db.users.find( |
SELECT * |
db.users.find( { user_id: /bc/ } )
|
SELECT * |
db.users.find( { user_id: /^bc/ } )
|
SELECT * |
db.users.find( { status: "A" } ).sort( { user_id: 1 } )
|
SELECT * |
db.users.find( { status: "A" } ).sort( { user_id: -1 } )
|
SELECT COUNT(*) |
db.users.count() or db.users.find().count() |
SELECT COUNT(user_id) |
db.users.count( { user_id: { $exists: true } } )
or db.users.find( { user_id: { $exists: true } } ).count()
|
SELECT COUNT(*) |
db.users.count( { age: { $gt: 30 } } )
or db.users.find( { age: { $gt: 30 } } ).count()
|
SELECT DISTINCT(status) |
db.users.distinct( "status" ) |
SELECT * |
db.users.findOne() or db.users.find().limit(1) |
SELECT * |
db.users.find().limit(5).skip(10) |
EXPLAIN SELECT * |
db.users.find( { status: "A" } ).explain()
|
For more information, see db.collection.find(), db.collection.distinct(),db.collection.findOne(), $ne $and, $or, $gt, $lt, $exists, $lte, $regex, limit(),skip(), explain(), sort(), and count().
Update Records
The following table presents the various SQL statements related to updating existing records in tables and the corresponding MongoDB statements.
| SQL Update Statements | MongoDB update() Statements |
|---|---|
UPDATE users |
db.users.update( |
UPDATE users |
db.users.update( |
For more information, see db.collection.update(), $set, $inc, and $gt.
Delete Records
The following table presents the various SQL statements related to deleting records from tables and the corresponding MongoDB statements.
| SQL Delete Statements | MongoDB remove() Statements |
|---|---|
DELETE FROM users |
db.users.remove( { status: "D" } )
|
DELETE FROM users |
db.users.remove({})
|
For more information, see db.collection.remove().
SQL to Aggregation Mapping Chart
The aggregation pipeline allows MongoDB to provide native aggregation capabilities that corresponds to many common data aggregation operations in SQL.
The following table provides an overview of common SQL aggregation terms, functions, and concepts and the corresponding MongoDB aggregation operators:
| SQL Terms, Functions, and Concepts | MongoDB Aggregation Operators |
|---|---|
| WHERE | $match |
| GROUP BY | $group |
| HAVING | $match |
| SELECT | $project |
| ORDER BY | $sort |
| LIMIT | $limit |
| SUM() | $sum |
| COUNT() | $sum |
| join | No direct corresponding operator; however, the$unwind operator allows for somewhat similar functionality, but with fields embedded within the document. |
Examples
The following table presents a quick reference of SQL aggregation statements and the corresponding MongoDB statements. The examples in the table assume the following conditions:
The SQL examples assume two tables, orders and order_lineitem that join by theorder_lineitem.order_id and the orders.id columns.
The MongoDB examples assume one collection orders that contain documents of the following prototype:
{
cust_id: "abc123",
ord_date: ISODate("2012-11-02T17:04:11.102Z"),
status: 'A',
price: 50,
items: [ { sku: "xxx", qty: 25, price: 1 },
{ sku: "yyy", qty: 25, price: 1 } ]
}
| SQL Example | MongoDB Example | Description |
|---|---|---|
SELECT COUNT(*) AS count |
db.orders.aggregate( [ |
Count all records fromorders |
SELECT SUM(price) AS total |
db.orders.aggregate( [ |
Sum theprice field from orders |
SELECT cust_id, |
db.orders.aggregate( [ |
For each uniquecust_id, sum theprice field. |
SELECT cust_id, |
db.orders.aggregate( [ |
For each uniquecust_id, sum theprice field, results sorted by sum. |
SELECT cust_id, |
db.orders.aggregate( [ |
For each uniquecust_id,ord_dategrouping, sum the pricefield. Excludes the time portion of the date. |
SELECT cust_id, |
db.orders.aggregate( [ |
For cust_idwith multiple records, return thecust_id and the corresponding record count. |
SELECT cust_id, |
db.orders.aggregate( [ |
For each uniquecust_id,ord_dategrouping, sum the pricefield and return only where the sum is greater than 250. Excludes the time portion of the date. |
SELECT cust_id, |
db.orders.aggregate( [ |
For each uniquecust_id with status A, sum the pricefield. |
SELECT cust_id, |
db.orders.aggregate( [ |
For each uniquecust_id with status A, sum the pricefield and return only where the sum is greater than 250. |
SELECT cust_id, |
db.orders.aggregate( [ |
For each uniquecust_id, sum the corresponding line item qtyfields associated with the orders. |
SELECT COUNT(*) |
db.orders.aggregate( [ |
Mongodb 和 普通数据库 各种属性 和语句 的对应的更多相关文章
- oracle数据库查询日期sql语句(范例)、向已经建好的表格中添加一列属性并向该列添加数值、删除某一列的数据(一整列)
先列上我的数据库表格: c_date(Date格式) date_type(String格式) 2011-01-01 0 2012-03-07 ...
- MySQL、MongoDB、Redis 数据库之间的区别
NoSQL 的全称是 Not Only SQL,也可以理解非关系型的数据库,是一种新型的革命式的数据库设计方式,不过它不是为了取代传统的关系型数据库而被设计的,它们分别代表了不同的数据库设计思路. M ...
- MySQL、MongoDB、Redis 数据库之间的区别与使用(本章迭代更新)
MySQL.MongoDB.Redis 数据库之间的区别与使用 MySQL.MongoDB.Redis 数据库之间的区别与使用(本章迭代更新) update:2019年2月20日 15:21:19(本 ...
- MySQL、MongoDB、Redis数据库Docker镜像制作
MySQL.MongoDB.Redis数据库Docker镜像制作 在多台主机上进行数据库部署时,如果使用传统的MySQL的交互式的安装方式将会重复很多遍.如果做成镜像,那么我们只需要make once ...
- MongoDB和Redis-NoSQL数据库-文档型-内存型
1NoSQL简述 CAP(Consistency,Availabiity,Partitiontolerance)理论告诉我们,一个分布式系统不可能满足一致性,可用性和分区容错性这三个需求,最多只能同时 ...
- MongoDB非关系型数据库开发手册
一:NoSql数据库 什么是NoSQL? NoSQL,指的是非关系型的数据库.NoSQL有时也称作Not Only SQL的缩写,是对不同于传统的关系型数据库的数据库管理系统的统称. NoSQL用于超 ...
- 第12章—使用NoSQL数据库—使用MongoDB+Jpa操作数据库
使用MongoDB+Jpa操作数据库 SpringData还提供了对多种NoSQL数据库的支持,包括MongoDB;neo4j和redis.他不仅支持自动化的repository,还支持基于模板的数据 ...
- 【数据库】 SQL 常用语句之系统语法
[数据库] SQL 常用语句之系统语法 1. 获取取数据库服务器上所有数据库的名字 SELECT name FROM master.dbo.sysdatabases 2. 获取取数据库服务器上所有非系 ...
- MongoDB(三):数据库操作、集合操作
1. 数据库操作 看完前面的文章,大家应该把环境搭建好了,下面我们就开始学习MongoDB的一些基本操作了. 首先我们要了解的一些要点: MongoDB将数据存储为一个文档,数据结构由键值对(key= ...
随机推荐
- 8 行 Node.js 代码实现代理服务器
接触 Node.js 已有多年,一直喜欢它的单线程模型和异步IO特性,以及 JavaScript 语言本身的灵活性.同时,JavaScript 前后端通吃,在全栈开发领域具有独特的优势.今天就来看看作 ...
- VIM的高级使用
VIM的高级使用 转:http://www.cnblogs.com/itech/archive/2012/02/22/2363111.html 1)一些常用的Vim配置,在~/.vimrc中 syn ...
- asp.net 母版页使用详解--转
http://www.cnblogs.com/_zjl/archive/2011/06/12/2078992.html 母版页是VS2005中新引入的一个概念,它很好地实现界面设计的模块化,并且实现实 ...
- 网上图书商城项目学习笔记-037工具类之BaseServlet及统一中文编码
1.统一中文编码分析 tomcat默认esetISO-8859-1编码,在servlet中,可能通过request的setCharacterEncoding(charset)和response.set ...
- Android:布局实例之常见用户设置界面
实现效果: 整理思路: 1.控件:文字TextView 和 右箭头ImageView 2.因为考虑到点击效果,设计为:最外层为全圆角,内层有四种情况,分别为上圆角.无圆角.下圆角和全圆角. 3.内层样 ...
- MyBatis的动态SQL操作--插入
需求:向数据库中插入一条数据 //id,name,sal非空,三个字段都插入 insert into student(id,name,sal) values (?,?,?) //id,name非空,只 ...
- 强强合体:Docker版Kali Linux发布
Kali Linux是一款开源的基于Debian的渗透测试专用操作系统,系统中包含一系列用于渗透测试的神器.最近,Kali的开发者们为喜爱Docker的童鞋们发布了新版本. FreeBuf百科:什么是 ...
- sqlserver查询指定树形结构的所有子节点
用标准sql的with实现递归查询(sql2005以上肯定支持,sql2000不清楚是否支持): with subqry(id,name,pid) as ( select id,name,pid fr ...
- Ubuntu 12.04上编译Vim7.4的时候遇到“no terminal library found”问题
错误如下: no terminal library foundchecking for tgetent()... configure: error: NOT FOUND! You need ...
- oh my zsh命令
打开某个文件夹地址,输入 cdf 命令,会自动进入这个文件夹命令行 open ./ 打开当前命令行所在目录的文件夹