中文分词工具——jieba
汉字是智慧和想象力的宝库。 ——索尼公司创始人井深大
简介
在英语中,单词就是“词”的表达,一个句子是由空格来分隔的,而在汉语中,词以字为基本单位,但是一篇文章的表达是以词来划分的,汉语句子对词构成边界方面很难界定。例如:南京市长江大桥,可以分词为:“南京市/长江/大桥”和“南京市长/江大桥”,这个是人为判断的,机器很难界定。在此介绍中文分词工具jieba,其特点为:
- 社区活跃、目前github上有19670的star数目
- 功能丰富,支持关键词提取、词性标注等
- 多语言支持(Python、C++、Go、R等)
- 使用简单
Jieba分词结合了基于规则和基于统计这两类方法。首先基于前缀词典进行词图扫描,前缀词典是指词典中的词按照前缀包含的顺序排列,例如词典中出现了“买”,之后以“买”开头的词都会出现在这一部分,例如“买水”,进而“买水果”,从而形成一种层级包含结构。若将词看成节点,词与词之间的分词符看成边,则一种分词方案对应着从第一个字到最后一个字的一条分词路径,形成全部可能分词结果的有向无环图。

jieba安装
安装很简单,先创建一个python3.6的虚拟环境,再激活环境,最后安装命令如下:
conda create -n nlp_py3 python=3.6
source activate nlp_py3
pip install jieba
jieba的三种分词模式
支持三种分词模式:
精确模式,试图将句子最精确地切开,适合文本分析。
全模式,把句子中所有的可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义。
搜索引擎模式,在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词。
支持繁体分词
支持自定义词典
MIT 授权协议
主要功能
1. 分词
- jieba.cut 方法接受三个输入参数: 需要分词的字符串;cut_all 参数用来控制是否采用全模式;HMM 参数用来控制是否使用 HMM 模型
- jieba.cut_for_search 方法接受两个参数:需要分词的字符串;是否使用 HMM(隐马尔可夫) 模型。该方法适合用于搜索引擎构建倒排索引的分词,粒度比较细
- jieba.lcut 以及 jieba.lcut_for_search 直接返回 list
执行示例:

2.添加自定义词典
- 开发者可以指定自己自定义的词典,以便包含 jieba 词库里没有的词。虽然 jieba 有新词识别能力,但是自行添加新词可以保证更高的正确率
- 用法: jieba.load_userdict(file_name) # file_name 为文件类对象或自定义词典的路径
- 词典格式和 dict.txt 一样,一个词占一行;每一行分三部分:词语、词频(可省略)、词性(可省略),用空格隔开,顺序不可颠倒。file_name 若为路径或二进制方式打开的文件,则文件必须为 UTF-8 编码。
词频省略时使用自动计算的能保证分出该词的词频。
执行示例:

tips:
P(台中) < P(台)×P(中),“台中”词频不够导致其成词概率较低
解决方法:强制调高词频
jieba.add_word('台中')
或者
jieba.suggest_freq('台中', True)
参考官网:https://github.com/fxsjy/jieba

中文分词工具——jieba的更多相关文章
- 中文分词工具jieba中的词性类型
jieba为自然语言语言中常用工具包,jieba具有对分词的词性进行标注的功能,词性类别如下: Ag 形语素 形容词性语素.形容词代码为 a,语素代码g前面置以A. a 形容词 取英语形容词 adje ...
- 中文分词工具探析(二):Jieba
1. 前言 Jieba是由fxsjy大神开源的一款中文分词工具,一款属于工业界的分词工具--模型易用简单.代码清晰可读,推荐有志学习NLP或Python的读一下源码.与采用分词模型Bigram + H ...
- 中文分词工具简介与安装教程(jieba、nlpir、hanlp、pkuseg、foolnltk、snownlp、thulac)
2.1 jieba 2.1.1 jieba简介 Jieba中文含义结巴,jieba库是目前做的最好的python分词组件.首先它的安装十分便捷,只需要使用pip安装:其次,它不需要另外下载其它的数据包 ...
- 中文分词工具探析(一):ICTCLAS (NLPIR)
1. 前言 ICTCLAS是张华平在2000年推出的中文分词系统,于2009年更名为NLPIR.ICTCLAS是中文分词界元老级工具了,作者开放出了free版本的源代码(1.0整理版本在此). 作者在 ...
- 开源中文分词工具探析(三):Ansj
Ansj是由孙健(ansjsun)开源的一个中文分词器,为ICTLAS的Java版本,也采用了Bigram + HMM分词模型(可参考我之前写的文章):在Bigram分词的基础上,识别未登录词,以提高 ...
- 开源中文分词工具探析(四):THULAC
THULAC是一款相当不错的中文分词工具,准确率高.分词速度蛮快的:并且在工程上做了很多优化,比如:用DAT存储训练特征(压缩训练模型),加入了标点符号的特征(提高分词准确率)等. 1. 前言 THU ...
- 开源中文分词工具探析(五):FNLP
FNLP是由Fudan NLP实验室的邱锡鹏老师开源的一套Java写就的中文NLP工具包,提供诸如分词.词性标注.文本分类.依存句法分析等功能. [开源中文分词工具探析]系列: 中文分词工具探析(一) ...
- 开源中文分词工具探析(五):Stanford CoreNLP
CoreNLP是由斯坦福大学开源的一套Java NLP工具,提供诸如:词性标注(part-of-speech (POS) tagger).命名实体识别(named entity recognizer ...
- 开源中文分词工具探析(七):LTP
LTP是哈工大开源的一套中文语言处理系统,涵盖了基本功能:分词.词性标注.命名实体识别.依存句法分析.语义角色标注.语义依存分析等. [开源中文分词工具探析]系列: 开源中文分词工具探析(一):ICT ...
随机推荐
- MySQL高级(十三)--- 表锁
前言:锁是计算机协调多个进程或线程并发访问某一资源的机制.在数据库中,除传统的计算机资源(如CPU.RAM.I/O等)的争用外,数据也是一种供许多用户共享的资源.如何保证数据并发访问的一致性.有效性是 ...
- JavaScript键值对集合怎么使用
JavaScript键值对集合怎么使用 我们可以对此键值对集合分为3种难度 1.简单的使用 var arr = { 'cn': "中国", 'usa': '美国', 'jp': ' ...
- 你知道Spring是怎么解析配置类的吗?
彻底读懂Spring(二)你知道Spring是怎么解析配置类的吗? 推荐阅读: Spring官网阅读系列 彻底读懂Spring(一)读源码,我们可以从第一行读起 Spring执行流程图如下: 如果图片 ...
- Spring Cloud学习 之 Spring Cloud Ribbon(执行流程源码分析)
Spring Boot版本:2.1.4.RELEASE Spring Cloud版本:Greenwich.SR1 文章目录 分析: 总结: 分析: 在上篇文章中,我们着重分析了RestTempla ...
- java基础篇 之 final关键字
final,字面上是最终的意思,通常来说,我们用它来作为修饰符的时候,都是代表"这是无法改变的"的意思.不想改变可能出与两种理由:设计或效率.由于这两个原因相差甚远,所以我们在 ...
- 在windows环境里,用Docker搭建Redis开发环境(新书第一个章节)
大家都知道高并发分布式组件的重要性,而且如果要进大厂,这些技术不可或缺.但这些技术的学习难点在于,大多数项目里的分布式组件,都是搭建在Linux系统上,在自己的windows机器上很难搭建开发环境,如 ...
- 【Kafka】消息队列相关知识
目录 概述 常用消息队列 常用消息队列对比 应用场景 消息队列的两种模式 概述 消息(Message) 是指在应用系统之间传递的数据.消息可以非常简单,比如只包含文本字符串,也可以更复杂,可能包含嵌入 ...
- HttpClient之Post接口代码范例
核心包: import com.alibaba.fastjson.JSONArray;import com.alibaba.fastjson.JSONObject; 一:接收数据 json数据格式如下 ...
- Java中Error和Exception的异同以及运行时异常(Runtime exception)与检查型异常(checked exception)的区别
一:Error和Exception的基本概念: 首先Exception和Error都是继承于Throwable 类,在 Java 中只有 Throwable 类型的实例才可以被抛出(throw)或者捕 ...
- HDU 2005 (水)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2005题目大意:给定年份,计算是第几天 解题思路: 很水,判定下是否为闰年,方法:四年一闰,百年不闰,四 ...