PAT Advanced 1094 The Largest Generation (25) [BFS,DFS,树的遍历]
题目
A family hierarchy is usually presented by a pedigree tree where all the nodes on the same level belong to the same generation. Your task is to find the generation with the largest population.
Input Specification:
Each input file contains one test case. Each case starts with two positive integers N (<100) which is the total number of family members in the tree (and hence assume that all the members are numbered from 01 to N), and M (<N) which is the number of family members who have children. Then M lines follow, each contains the information of a family member in the following format:
ID K ID[1] ID[2] … ID[K]
where ID is a two-digit number representing a family member, K (>0) is the number of his/her children, followed by a sequence of two-digit ID’s of his/her children. For the sake of simplicity, let us fix the root ID to be 01. All the numbers in a line are separated by a space.
Output Specification:
For each test case, print in one line the largest population number and the level of the corresponding generation. It is assumed that such a generation is unique, and the root level is defined to be 1.
Sample Input:
23 13
21 1 23
01 4 03 02 04 05
03 3 06 07 08
06 2 12 13
13 1 21
08 2 15 16
02 2 09 10
11 2 19 20
17 1 22
05 1 11
07 1 14
09 1 17
10 1 18
Sample Output:
9 4
题目分析
已知每个节点的所有子节点,求节点最多的层数max_num_h及对应层结点数max_num
解题思路
思路 01(最优)
邻接表存储树,dfs深度优先遍历树(当前节点所在层级用函数参数记录),int cndn[n]记录每层节点数,并更新max_num和max_num_h
思路 02
邻接表存储树,bfs深度优先遍历树(当前节点所在层级用int h[n]记录),int cndn[n]记录每层节点数,并更新max_num和max_num_h
易错点
题目理解错误,求的是节点最多的层(而不是节点最多的分支),求的是节点最多的层(而不是叶结点最多的层)
Code
Code 01(dfs 最优)
#include <iostream>
#include <vector>
#include <queue>
using namespace std;
const int maxn=110;
vector<int> nds[maxn];
int cnds[maxn];//cnds[i] 记录i层结点总数
int max_num,max_num_h;//max_num树的宽度;max_num_h 结点数最多的层数;
void dfs(int now, int h) {
cnds[h]++;
if(max_num<cnds[h]) { //更新最多结点的层数信息
max_num_h=h; //层最多结点数 (树的宽度)
max_num=cnds[h]; //最多结点数的层号
}
if(nds[now].size()==0)return;
for(int i=0; i<nds[now].size(); i++) { //遍历当前结点所有子结点,进行dfs遍历
dfs(nds[now][i],h+1); // 当前结点的子结点所在层数=当前结点层数+1
}
}
int main(int argc,char * argv[]) {
int n,m,id,k,cid;
scanf("%d %d",&n,&m); //n结点总数;m非叶子结点数
for(int i=0; i<m; i++) { //输入所有非叶子结点的所有子节点信息
scanf("%d %d",&id,&k); //id 父结点编号;k该父结点有多少个子结点
for(int j=0; j<k; j++) {
scanf("%d", &cid);
nds[id].push_back(cid); //保存每个孩子到其父结点的容器中
}
}
dfs(1,1);
printf("%d %d",max_num,max_num_h);
return 0;
}
Code 02(bfs)
#include <iostream>
#include <vector>
#include <queue>
using namespace std;
const int maxn=110;
vector<int> nds[maxn];
int h[maxn];//h[i] 记录i结点所在层数
int cnds[maxn];//cnds[i] 记录i层结点总数
int max_num,max_num_h;//max_num树的宽度;max_num_h 结点数最多的层数;
void bfs() {
queue<int> q;//bfs需要借助队列实现
q.push(1); //根结点编号为1
while(!q.empty()) {
int now = q.front();
q.pop();
cnds[h[now]]++;
if(max_num<cnds[h[now]]) { //更新最多结点的层数信息
max_num_h=h[now]; //层最多结点数 (树的宽度)
max_num=cnds[h[now]]; //最多结点数的层号
}
for(int i=0; i<nds[now].size(); i++) { //遍历当前结点所有子结点,进行bfs遍历
h[nds[now][i]]=h[now]+1; // 当前结点的子结点所在层数=当前结点层数+1
q.push(nds[now][i]);
}
}
}
int main(int argc,char * argv[]) {
int n,m,id,k,cid;
scanf("%d %d",&n,&m); //n结点总数;m非叶子结点数
for(int i=0; i<m; i++) { //输入所有非叶子结点的所有子节点信息
scanf("%d %d",&id,&k); //id 父结点编号;k该父结点有多少个子结点
for(int j=0; j<k; j++) {
scanf("%d", &cid);
nds[id].push_back(cid); //保存每个孩子到其父结点的容器中
}
}
h[1]=1;
bfs();
printf("%d %d",max_num,max_num_h);
return 0;
}
PAT Advanced 1094 The Largest Generation (25) [BFS,DFS,树的遍历]的更多相关文章
- PAT练习——1094 The Largest Generation (25 point(s))
题目如下: #include<iostream> #include<vector> #include<algorithm> using namespace std; ...
- 1094. The Largest Generation (25)-(dfs,树的遍历,统计每层的节点数)
题目很简单,就是统计一下每层的节点数,输出节点数最多的个数和对应的层数即可. #include <iostream> #include <cstdio> #include &l ...
- PAT甲级——1094 The Largest Generation (树的遍历)
本文同步发布在CSDN:https://blog.csdn.net/weixin_44385565/article/details/93311728 1094 The Largest Generati ...
- PTA甲级1094 The Largest Generation (25分)
PTA甲级1094 The Largest Generation (25分) A family hierarchy is usually presented by a pedigree tree wh ...
- PAT (Advanced Level) Practise - 1094. The Largest Generation (25)
http://www.patest.cn/contests/pat-a-practise/1094 A family hierarchy is usually presented by a pedig ...
- PAT (Advanced Level) 1094. The Largest Generation (25)
简单DFS. #include<cstdio> #include<cstring> #include<cmath> #include<algorithm> ...
- 【PAT甲级】1094 The Largest Generation (25 分)(DFS)
题意: 输入两个正整数N和M(N<100,M<N),表示结点数量和有孩子结点的结点数量,输出拥有结点最多的层的结点数量和层号(根节点为01,层数为1,层号向下递增). AAAAAccept ...
- 1094. The Largest Generation (25)
A family hierarchy is usually presented by a pedigree tree where all the nodes on the same level bel ...
- PAT 甲级 1094 The Largest Generation
https://pintia.cn/problem-sets/994805342720868352/problems/994805372601090048 A family hierarchy is ...
随机推荐
- JAVA实现数组的反转--基础
直接上代码 这个算法比较简单,唯一需要注意的就是第8行和第9行.一定要多减去1 因为for循环从0开始,而数组长度是从0到length-1的. class ArrReverse { //实现数组元素的 ...
- NIO 与 零拷贝
零拷贝介绍 零拷贝是网络编程的关键, 很多性能优化都需要零拷贝. 在 Java程序中, 常用的零拷贝方式有m(memory)map[内存映射] 和 sendFile.它们在OS中又是怎样的设计? NI ...
- windows搭建安装react-native环境
在win10环境下,利用Genymotion模拟器,配置react-native的环境. 一.安装JDK 在网上下载jdk,版本最好是1.8以上.安装后要对环境变量进行配置. 同时在 Path 中配置 ...
- 解决Exception: org.apache.hadoop.io.nativeio.NativeIO$Windows.access0(Ljava/lang/String;I)Z
在项目中添加src中添加NativeIO类 /** * Licensed to the Apache Software Foundation (ASF) under one * or more con ...
- 网卡绑定多个ip
现在我的树莓派上的wlan0的IP是192.168.31.237,之前通过双绞线连接时候eth0的ip是192.168.31.50 . 我就想啊,能不能把wlan0的ip设置成50.......... ...
- js加密(十四)mail.yw.gov.cn/ RSA
1. url: http://mail.yw.gov.cn/ 2. target:登录js 3. 简单分析: 寻找加密js: 3.1 直接寻找加密的参数p是不好找的,所以我们试着去寻找一些更明显的参数 ...
- MVC 中引用Angularjs
首先在Maname NuGet Packages中 安装相应的包,我用的是作者为 AngualrJS Team的 随后在相应的Scripts中会出现对应文件. 如果只在某一个页面中使用Angualrj ...
- Reference在Essay写作中的最佳占比是多少?
很多同学在写完Essay作业后 就觉得大功告成了 并不是很注重参考文献 导致查重率过高 面临抄袭.取消成绩. 甚至被退学的情况 或者在essay写作中勉强标出几处 非常随意的在后面列出 其实这是很不正 ...
- Linux命令笔记一
#查看文件大小[root@elegant-codes-3 py]# ls -lh total 1.1M -rw-r--r-- 1 root root 5.0K Feb 21 08:18 Crawl_W ...
- 2020/2/17 zzcms8.2 PHP代码审计
0x00 看网站结构 ********************************* * * * ZZCMS产品版目录结构 * * * ****************************** ...