BFS与DFS常考算法整理
BFS与DFS常考算法整理
- Preface
BFS(Breath-First Search,广度优先搜索)与DFS(Depth-First Search,深度优先搜索)是两种针对树与图数据结构的遍历或搜索算法,在树与图相关算法的考察中是非常常见的两种解题思路。
Definition of DFS and BFS
DFS的wikipedia定义:
Depth-first search (DFS) is an algorithm for traversing or searching tree or graph data structures. The algorithm starts at the root node (selecting some arbitrary node as the root node in the case of a graph) and explores as far as possible along each branch before backtracking.
BFS的wikipedia定义:
Breadth-first search (BFS) is an algorithm for traversing or searching tree or graph data structures. It starts at the tree root (or some arbitrary node of a graph, sometimes referred to as a ‘search key’[1]), and explores all of the neighbor nodes at the present depth prior to moving on to the nodes at the next depth level.
It uses the opposite strategy as depth-first search, which instead explores the highest-depth nodes first before being forced to backtrack and expand shallower nodes.
So obviously, as their name suggest, DFS focuses on ‘depth’ when searching or traversing while BFS focuses on ‘breath’.
By the way, because of DFS’s feature, it’s easy to relate it with ‘Backtracking’ algorithm as the wiki definition mentions. The relationship between DFS and backtracking is well explained by Reed Copsey on StackOverflow:
Backtracking is a more general purpose algorithm.
Depth-First search is a specific form of backtracking related to searching tree structures. From Wikipedia:
One starts at the root (selecting some node as the root in the graph case) and explores as far as possible along each branch before backtracking.
It uses backtracking as part of its means of working with a tree, but is limited to a tree structure.
Backtracking, though, can be used on any type of structure where portions of the domain can be eliminated - whether or not it is a logical tree. The Wiki example uses a chessboard and a specific problem - you can look at a specific move, and eliminate it, then backtrack to the next possible move, eliminate it, etc.
How to Implement DFS and BFS
DFS
In tree structure, DFS means we always start from a root node and try to reach the leaf node as direct as possible before we have to backtrack.

Order in which the nodes are visited
In graph, DFS means we start from a random assigned node in the graph, and explores as far as possible along the branch before we have to backtrack.
So the key points for DFS are: 
- How to explore as far as possible? 
- How to backtrack?
How to explore as far as possible
Normally, for tree node, it would have left child or right child, so we would continuously go on exploring current node’s child node until we encounter a null node, then we go back to last node. Repeat above procedures until all nodes have been visited.
for graph node, we do the similar exploration: explore as further as possible according to the representation of graph (adjacency list, adjacency matrix or incidence matrix) until we find no more node that hasn’t been visited and connected with current node, then we go back to last node. Repeat above procedures until all nodes have been visited.
How to backtrack/go back?
‘Go back’ generally can be realized using data structure ——stack—— or by recursion. And if we use stack, it means we would need to push each node we visited in the process of exploring each branch, and pop when we can’t explore further starting from current node.
BFS
In tree structure, BFS means we always start from a root node and try to all the other nodes in the same breath before we further try exploring nodes at next depth level. (The same explanation for graph)

Order in which the nodes are visited
So the key points for BFS are:
- How to explore all nodes of same depth level?
How to explore all nodes of same depth level?
We can use a queue to do this: Starting from root node of a tree (Or a random node in a graph), we add visit all nodes connected with the starting node and add them to the queue. Then, we poll node from queue one by one and repeat above procedures until all nodes have been visited.
Typical Leetcode Prbolems
DFS
Path Sum II
Given a binary tree and a sum, find all root-to-leaf paths where each path’s sum equals the given sum.
Note: A leaf is a node with no children.
Example:
Given the below binary tree and sum = 22,
      5
     / \
    4   8
   /   / \
  11  13  4
 /  \    / \
7    2  5   1Return:
[
   [5,4,11,2],
   [5,8,4,5]
]- My Answer
package medium2;
import java.util.ArrayList;
import java.util.List;
/**
 * @author Tom Qian
 * @email tomqianmaple@outlook.com
 * @github https://github.com/bluemapleman
 * @date 2018年6月7日
 */
public class PathSumII
{
    // DFS: make use of recursion to backtrack
    public List<List<Integer>> pathSum(TreeNode root, int sum) {
        List<List<Integer>> ans=new ArrayList<List<Integer>>();
        if(root==null)
            return ans;
        int goal=sum-root.val;
        if(goal==0) {
            if(root.left==null && root.right==null) {
                List<Integer> tempList=new ArrayList<>();
                tempList.add(root.val);
                ans.add(tempList);
                return ans;
            }
        }
        List<List<Integer>> temp;
        if((temp=pathSum(root.left, goal)).size()!=0) {
            for(List<Integer> list:temp) {
                list.add(0, root.val);
                ans.add(list);
            }
        }
        if((temp=pathSum(root.right, goal)).size()!=0) {
            for(List<Integer> list:temp) {
                list.add(0,root.val);
                ans.add(list);
            }
        }
        return ans;
    }
}
Convert Sorted List to Binary Search Tree
Given a singly linked list where elements are sorted in ascending order, convert it to a height balanced BST.
For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.
Example:
Given the sorted linked list: [-10,-3,0,5,9],
One possible answer is: [0,-3,9,-10,null,5], which represents the following height balanced BST:
      0
     / \
   -3   9
   /   /
 -10  5- My Answer
package medium2;
/**
 * @author Tom Qian
 * @email tomqianmaple@outlook.com
 * @github https://github.com/bluemapleman
 * @date 2018年6月11日
 */
public class ConvertSortedListtoBinarySearchTree
{
    // DFS: make use of recursion to backtrack
    // find the middle node of sorted linked list, and take it as the root node of the BST.
    public TreeNode sortedListToBST(ListNode head) {
        if(head==null)
            return null;
        ListNode slow=head,fast=head,followSlow=head;
        boolean moveFlag=false;
        while(fast!=null && fast.next!=null) {
            if(moveFlag)
                followSlow=followSlow.next;
            moveFlag=true;
            slow=slow.next;
            fast=fast.next.next;
        }
        TreeNode root=new TreeNode(slow.val);
        if(moveFlag) {
            followSlow.next=null;
            root.left=sortedListToBST(head);
            root.right=sortedListToBST(slow.next);
        }
        return root;
    }
}Course Schedule
There are a total of n courses you have to take, labeled from 0 to n-1.
Some courses may have prerequisites, for example to take course 0 you have to first take course 1, which is expressed as a pair: [0,1]
Given the total number of courses and a list of prerequisite pairs, is it possible for you to finish all courses?
Example 1:
Input: 2, [[1,0]]
Output: true
Explanation: There are a total of 2 courses to take.
             To take course 1 you should have finished course 0. So it is possible.Example 2:
Input: 2, [[1,0],[0,1]]
Output: false
Explanation: There are a total of 2 courses to take.
             To take course 1 you should have finished course 0, and to take course 0 you should
             also have finished course 1. So it is impossible.Note:
1.The input prerequisites is a graph represented by a list of edges, not adjacency matrices. Read more about how a graph is represented.
2.You may assume that there are no duplicate edges in the input prerequisites.
- My Answer
// DFS
    public boolean canFinish(int numCourses, int[][] prerequisites) {
        Map<Integer, List<Integer>> map=new HashMap<>();
        for(int i=0;i<numCourses;i++)
            map.put(i, new ArrayList<>());
        for(int i=0;i<prerequisites.length;i++) {
            map.get(prerequisites[i][0]).add(prerequisites[i][1]);
        }
        // start DFS: detect if there is any circle in course graph, i.e. whether DFS starting from certain start point i would lead to the start point again.
        for(int i=0;i<numCourses;i++) {
            // Use a set to avoid infinite loop: when met same node twice, ignore it.
            Set<Integer> set=new HashSet<>();
            // Use a stack to backtrack
            ArrayDeque<Integer> stack=new ArrayDeque<>();
            List<Integer> preCourseList=map.get(i);
            for(Integer preCourse:preCourseList)
                stack.push(preCourse);
            while(!stack.isEmpty()) {
                int preCourse=stack.pop();
                if(set.contains(preCourse))
                    continue;
                else
                    set.add(preCourse);
                if(preCourse==i)
                    return false;
                else {
                    preCourseList=map.get(preCourse);
                    for(Integer tempPreCourse:preCourseList) {
                        stack.push(tempPreCourse);
                    }
                }
            }
        }
        return true;
    }BFS
Course Schedule
- My Answer
// BFS
    public boolean canFinish(int numCourses, int[][] prerequisites) {
        Map<Integer, List<Integer>> map=new HashMap<>();
        for(int i=0;i<numCourses;i++)
            map.put(i, new ArrayList<>());
        for(int i=0;i<prerequisites.length;i++) {
            map.get(prerequisites[i][0]).add(prerequisites[i][1]);
        }
        // start DFS: detect if there is any circle in course graph, i.e. whether BFS starting from certain start point i would lead to the start point again.
        for(int i=0;i<numCourses;i++) {
            // Use a set to avoid infinite loop: when met same node twice, ignore it.
            Set<Integer> set=new HashSet<>();
            // Use a queue to remember nodes of same depth level
            ArrayDeque<Integer> queue=new ArrayDeque<>();
            List<Integer> preCourseList=map.get(i);
            for(Integer preCourse:preCourseList)
                queue.add(preCourse);
            while(!queue.isEmpty()) {
                int preCourse=queue.poll();
                if(set.contains(preCourse))
                    continue;
                else
                    set.add(preCourse);
                if(preCourse==i)
                    return false;
                else {
                    preCourseList=map.get(preCourse);
                    for(Integer tempPreCourse:preCourseList) {
                        queue.add(tempPreCourse);
                    }
                }
            }
        }
        return true;
    }Binary Tree Right Side View
Given a binary tree, imagine yourself standing on the right side of it, return the values of the nodes you can see ordered from top to bottom.
Example:
Input: [1,2,3,null,5,null,4]
Output: [1, 3, 4]
Explanation:
   1            <---
 /   \
2     3         <---
 \     \
  5     4       <---- My Answer
package medium2;
import java.util.ArrayDeque;
import java.util.ArrayList;
import java.util.List;
/**
 * @author Tom Qian
 * @email tomqianmaple@outlook.com
 * @github https://github.com/bluemapleman
 * @date 2018年6月12日
 */
public class BinaryTreeRightSideView
{
     public List<Integer> rightSideView(TreeNode root) {
         List<Integer> ans=new ArrayList<>();
         if(root==null)
             return ans;
         ans.add(root.val);
         ArrayDeque<TreeNode> queue1=new ArrayDeque<>(),queue2=new ArrayDeque<>();;
         queue1.add(root);
         while(!queue1.isEmpty() || !queue2.isEmpty()){
             TreeNode rightestNode=null;
             if(!queue1.isEmpty()) {
                 while(!queue1.isEmpty()) {
                     TreeNode fatherNode=queue1.poll();
                     if(fatherNode.right!=null) {
                         queue2.add(fatherNode.right);
                         if(rightestNode==null)
                             rightestNode=fatherNode.right;
                     }
                     if(fatherNode.left!=null) {
                         queue2.add(fatherNode.left);
                         if(rightestNode==null)
                             rightestNode=fatherNode.left;
                     }
                 }
             }else{
                 while(!queue2.isEmpty()) {
                     TreeNode fatherNode=queue2.poll();
                     if(fatherNode.right!=null) {
                         queue1.add(fatherNode.right);
                         if(rightestNode==null)
                             rightestNode=fatherNode.right;
                     }
                     if(fatherNode.left!=null) {
                         queue1.add(fatherNode.left);
                         if(rightestNode==null)
                             rightestNode=fatherNode.left;
                     }
                 }
             }
             if(rightestNode!=null)
                 ans.add(rightestNode.val);
         }
         return ans;
     }
}.
BFS与DFS常考算法整理的更多相关文章
- Leetcode——二叉树常考算法整理
		二叉树常考算法整理 希望通过写下来自己学习历程的方式帮助自己加深对知识的理解,也帮助其他人更好地学习,少走弯路.也欢迎大家来给我的Github的Leetcode算法项目点star呀~~ 二叉树常考算法 ... 
- Leetcode——回溯法常考算法整理
		Leetcode--回溯法常考算法整理 Preface Leetcode--回溯法常考算法整理 Definition Why & When to Use Backtrakcing How to ... 
- C++常考算法
		1 strcpy, char * strcpy(char* target, char* source){ // 不返回const char*, 因为如果用strlen(strcpy(xx,xxx)) ... 
- c++常考算法知识点汇总
		前言:写这篇博客完全是给自己当做笔记用的,考虑到自己的c++基础不是很踏实,只在大一学了一学期,c++的面向对象等更深的知识也一直没去学.就是想当遇到一些比较小的知识,切不值得用一整篇 博客去记述的时 ... 
- .NET面试常考算法
		1.求质数 质数也成为素数,质数就是这个数除了1和他本身两个因数以外,没有其他因数的数,叫做质数,和他相反的是合数, 就是除了1和他本身两个因数以外,还友其他因数的数叫做合数. 1 nam ... 
- JS-常考算法题解析
		常考算法题解析 这一章节依托于上一章节的内容,毕竟了解了数据结构我们才能写出更好的算法. 对于大部分公司的面试来说,排序的内容已经足以应付了,由此为了更好的符合大众需求,排序的内容是最多的.当然如果你 ... 
- 近5年常考Java面试题及答案整理(三)
		上一篇:近5年常考Java面试题及答案整理(二) 68.Java中如何实现序列化,有什么意义? 答:序列化就是一种用来处理对象流的机制,所谓对象流也就是将对象的内容进行流化.可以对流化后的对象进行读写 ... 
- 近5年常考Java面试题及答案整理(二)
		上一篇:近5年常考Java面试题及答案整理(一) 31.String s = new String("xyz");创建了几个字符串对象? 答:两个对象,一个是静态区的"x ... 
- 面试常考的常用数据结构与算法(zz)
		数据结构与算法,这个部分的内容其实是十分的庞大,要想都覆盖到不太容易.在校学习阶段我们可能需要对每种结构,每种算法都学习,但是找工作笔试或者面试的时候,要在很短的时间内考察一个人这方面的能力,把每种结 ... 
随机推荐
- 何用Java8 Stream API进行数据抽取与收集
			上一篇中我们通过一个实例看到了Java8 Stream API 相较于传统的的Java 集合操作的简洁与优势,本篇我们依然借助于一个实际的例子来看看Java8 Stream API 如何抽取及收集数据 ... 
- 机器学习基础——详解自然语言处理之tf-idf
			本文始发于个人公众号:TechFlow,原创不易,求个关注 今天的文章和大家聊聊文本分析当中的一个简单但又大名鼎鼎的算法--TF-idf.说起来这个算法是自然语言处理领域的重要算法,但是因为它太有名了 ... 
- Web最佳实践阅读总结(2)
			代码符合标准 标准的页面会保证正确的渲染 页面容易被搜索引擎搜索,提高搜索排名(SEO) 提高网站的易用性 网页更好维护和扩展(Validator,HTML Validator 属于Firefox插件 ... 
- PYTHON 第二天学习记录
- RestTemplate 负载均衡原理
			RestTemplate 是通过拦截器改变请求的URI的方式来指定服务器的,此处将通过一个自定义LoadBalanced的方式来进行说明 1.导入jar包 <parent> <gro ... 
- 3DGIS+BIM集成与智慧城市应用
			ZTMap3D是基于网络的三维地理信息系统平台软件,利用 ZTMap3D能够实现三维地理信息和虚拟现实,是数字化地球和数字化城市建设的基础平台. BIM(building information mo ... 
- 027.掌握Service-Ingress使用
			一 Ingress简介 1.1 Ingress 通常Service的表现形式为IP:Port,即工作在TCP/IP层. 对于基于HTTP的服务来说,不同的URL地址经常对应到不同的后端服务(RS)或者 ... 
- 项目测试中发现产品bug怎么办
			我所在的产品线,并非公司最大最强的产品 甚至为了推广我们这个产品,一般会拿给客户先免费试用 而在试用之前,是要经过一番通测的,测得很急,测得很快 所以产品bug非常多 那么在测试项目的时候,自然会发现 ... 
- 初识JVM:(二)Java的垃圾回收机制详解
			声明:本文主要参考https://www.cnblogs.com/codeobj/p/12021041.html 仅供个人学习.研究之用,请勿用于商业用途,如涉及侵权,请及时反馈,立刻删除. 一.Ja ... 
- Wireshark过滤器写法总结
			目录 #Wireshark提供了两种过滤器: 1.捕获过滤器 2.显示过滤器 #过滤器具体写法 #显示过滤器写法 #捕捉过滤器写法 #Wireshark提供了两种过滤器: 1.捕获过滤器 捕获过滤器: ... 
