@desription@

给定两个长度为 n 的数列 A, B。现你可以将两数列重排列,然后对应项相加得到 C[i] = A[i] + B[i]。

问你所能构造的 C 中众数的最大出现次数,以及此时的众数。如果有多种方案,取最大的众数。

原题传送门。

@solution@

记 \(cnta[i]\) 表示 \(i\) 在 A 中的出现次数,\(cntb[i]\) 表示 \(i\) 在 B 中的出现次数。则 p 在 C 中的最大出现次数为 \(\sum_{i=0}^{p}\min(cnta[i], cntb[p-i])\)。

注意到它长得特别像个卷积。我们记 \(Fa_i(x) = \sum_{p=0}^{MAX} [cnta[p] = i]x^{p}\),同理记 \(Fb_i(x) = \sum_{p=0}^{MAX} [cntb[p] = i]x^p\)。则答案:

\[G(x) = \sum_{i=1}^{n}i\times (Fa_i(x)(\sum_{j=i+1}^{n} Fb_j(x)) + Fb_i(x)(\sum_{j=i+1}^{n} Fa_j(x)) + Fa_i(x) Fb_i(x))
\]

不过这样算还不如暴力快。

注意到 \(\sum cnta[i] = n\),也就是说如果 i 越大,满足 cnta[p] = i 的 p 会越少。

具体而言,A 中 cnta[p] ≥ K 有 \(O(\frac{n}{K})\) 个,B 中也有 \(O(\frac{n}{K})\)。那么我们可以枚举每一个可能的二元组暴力计算,时间复杂度为 \(O(\frac{n^2}{K^2})\)。

当 K 较大时,这个暴力算法相对于上面的卷积方法而言,其实是非常快的。

于是又到了喜闻乐见的复杂度平衡时间:对于 i < K,使用卷积计算,复杂度为 \(O(K\times MAX\times \log MAX)\);对于 i >= K,使用暴力枚举,复杂度为 \(O(\frac{n^2}{K^2})\)

因为 n 与 MAX 同阶,我们直接令 \(Kn\log n = \frac{n^2}{K^2}\),解得 \(K = (\frac{n}{\log n})^{\frac{1}{3}}\)。

然后总时间复杂度 \(O(n^{\frac{4}{3}}\times \log^{\frac{2}{3}}n )\),虽然看着挺糟不过其实挺优秀的。

@accepted code@

#include <cstdio>
#include <vector>
#include <iostream>
#include <algorithm>
using namespace std; const int MOD = 998244353;
const int MAXN = (1 << 17);
const int K = 18;
const int G = 3; inline int add(int x, int y) {return (x + y >= MOD ? x + y - MOD : x + y);}
inline int sub(int x, int y) {return (x - y < 0 ? x - y + MOD : x - y);}
inline int mul(int x, int y) {return 1LL * x * y % MOD;} int pow_mod(int b, int p) {
int ret = 1;
for(int i=p;i;i>>=1,b=mul(b,b))
if( i & 1 ) ret = mul(ret, b);
return ret;
} int w[22], iw[22];
void init() {
for(int i=0;i<22;i++) {
w[i] = pow_mod(G, (MOD - 1) / (1 << i));
iw[i] = pow_mod(w[i], MOD - 2);
}
}
int length(int n) {
int len; for(len = 1; len < n; len <<= 1);
return len;
}
void ntt(int *A, int n, int type) {
for(int i=0,j=0;i<n;i++) {
if( i < j ) swap(A[i], A[j]);
for(int k=(n>>1);(j^=k)<k;k>>=1);
}
for(int i=1;(1<<i)<=n;i++) {
int s = (1 << i), t = (s >> 1);
int u = (type == 1 ? w[i] : iw[i]);
for(int j=0;j<n;j+=s) {
for(int k=0,p=1;k<t;k++,p=mul(p,u)) {
int x = A[j+k], y = mul(p, A[j+k+t]);
A[j+k] = add(x, y), A[j+k+t] = sub(x, y);
}
}
}
if( type == -1 ) {
int iv = pow_mod(n, MOD - 2);
for(int i=0;i<n;i++)
A[i] = mul(A[i], iv);
}
} class SumOfArrays{
public:
vector<pair<int, int> >na, nb;
int f[2*MAXN + 5];
int ca[MAXN + 5], cb[MAXN + 5];
int a[MAXN + 5], b[MAXN + 5];
int ta1[2*MAXN + 5], ta2[2*MAXN + 5], tb1[2*MAXN + 5], tb2[2*MAXN + 5], tmp[2*MAXN + 5];
string findbestpair(int n, vector<int>A, vector<int>B) {
init();
a[0] = A[0], a[1] = A[1], b[0] = B[0], b[1] = B[1];
for(int i=2;i<n;i++) {
a[i] = (1LL*A[2]*a[i-1]%A[5] + 1LL*A[3]*a[i-2]%A[5] + A[4]) % A[5];
b[i] = (1LL*B[2]*b[i-1]%B[5] + 1LL*B[3]*b[i-2]%B[5] + B[4]) % B[5];
}
for(int i=0;i<n;i++)
ca[a[i]]++, cb[b[i]]++;
for(int i=0;i<MAXN;i++) {
if( ca[i] >= K ) na.push_back(make_pair(i, ca[i]));
if( cb[i] >= K ) nb.push_back(make_pair(i, cb[i]));
}
for(int i=0;i<(int)na.size();i++)
for(int j=0;j<(int)nb.size();j++)
f[na[i].first + nb[j].first] += min(na[i].second, nb[j].second);
for(int i=1;i<K;i++) {
bool flag = false;
for(int j=0;j<MAXN;j++) {
if( ca[j] > i ) ta1[j]++;
else if( ca[j] == i ) ta2[j]++, flag = true; if( cb[j] > i ) tb1[j]++;
else if( cb[j] == i ) tb2[j]++, flag = true;
}
int len = 2*MAXN;
if( flag ) {
ntt(ta1, len, 1), ntt(ta2, len, 1), ntt(tb1, len, 1), ntt(tb2, len, 1);
for(int j=0;j<len;j++)
tmp[j] = add(add(mul(ta1[j], tb2[j]), mul(ta2[j], tb1[j])), mul(ta2[j], tb2[j]));
ntt(tmp, len, -1);
for(int j=0;j<len;j++)
f[j] = add(f[j], mul(tmp[j], i));
}
for(int j=0;j<len;j++) ta1[j] = ta2[j] = tb1[j] = tb2[j] = tmp[j] = 0;
} int ans = 0, res;
for(int i=2*MAXN-1;i>=0;i--)
if( f[i] > ans ) ans = f[i], res = i;
string ret = "";
while( res ) ret = (char)(res % 10 + '0') + ret, res /= 10;
ret = " " + ret;
while( ans ) ret = (char)(ans % 10 + '0') + ret, ans /= 10;
return ret;
}
};

@details@

为什么要把函数返回值设置成这么反人类形式,还要把数转化成字符串。直接返回一个数组不挺好的。

@topcoder - SRM603D1L3@ SumOfArrays的更多相关文章

  1. TopCoder kawigiEdit插件配置

    kawigiEdit插件可以提高 TopCoder编译,提交效率,可以管理保存每次SRM的代码. kawigiEdit下载地址:http://code.google.com/p/kawigiedit/ ...

  2. 记第一次TopCoder, 练习SRM 583 div2 250

    今天第一次做topcoder,没有比赛,所以找的最新一期的SRM练习,做了第一道题. 题目大意是说 给一个数字字符串,任意交换两位,使数字变为最小,不能有前导0. 看到题目以后,先想到的找规律,发现要 ...

  3. TopCoder比赛总结表

    TopCoder                        250                              500                                 ...

  4. Topcoder几例C++字符串应用

    本文写于9月初,是利用Topcoder准备应聘时的机试环节临时补习的C++的一部分内容.签约之后,没有再进行练习,此文暂告一段落. 换句话说,就是本文太监了,一直做草稿看着别扭,删掉又觉得可惜,索性发 ...

  5. TopCoder

    在TopCoder下载好luncher,网址:https://www.topcoder.com/community/competitive%20programming/ 选择launch web ar ...

  6. TopCoder SRM 596 DIV 1 250

    body { font-family: Monospaced; font-size: 12pt } pre { font-family: Monospaced; font-size: 12pt } P ...

  7. 求拓扑排序的数量,例题 topcoder srm 654 div2 500

    周赛时遇到的一道比较有意思的题目: Problem Statement      There are N rooms in Maki's new house. The rooms are number ...

  8. TopCoder SRM 590

     第一次做TC,不太习惯,各种调试,只做了一题...... Problem Statement     Fox Ciel is going to play Gomoku with her friend ...

  9. Topcoder Arena插件配置和训练指南

    一. Arena插件配置 1. 下载Arena 指针:http://community.topcoder.com/tc?module=MyHome 左边Competitions->Algorit ...

随机推荐

  1. python3.x 基础一:str字符串方法

    *字符串不能更改值 数据类型字符串str |  capitalize(...)   返回字符串中第一个字母大写 |      S.capitalize() -> str |       |    ...

  2. poj2112 网络流+二分答案

    Optimal Milking Time Limit: 2000MS   Memory Limit: 30000K Total Submissions: 18083   Accepted: 6460 ...

  3. 【MySQL】深入理解MySQL锁和事务隔离级别

    先看个小案例: 话不多说,上案例,先创建一个表 mysql> CREATE TABLE IF NOT EXISTS `account`( `id` INT UNSIGNED AUTO_INCRE ...

  4. 走迷宫(三):在XX限制条件下,是否走得出。

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1010 题目前提条件:让你输入一个数组,包含一个起点S,一个终点D,一个时间T.(其中X代表墙,.代表此 ...

  5. vue过渡动画样式

    在进入/离开的过渡中,会有 6 个 class 切换. v-enter:定义进入过渡的开始状态.在元素被插入之前生效,在元素被插入之后的下一帧移除. v-enter-active:定义进入过渡生效时的 ...

  6. 【软工】[技术博客] 用Monaco Editor打造接近vscode体验的浏览器IDE

    [技术博客] 用Monaco Editor打造接近vscode体验的浏览器IDE 官方文档与重要参考资料 官方demo 官方API调用样例 Playground 官方API Doc,但其搜索框不支持模 ...

  7. 树莓派 Ubuntu Mate更换中国软件源

    更换步骤: 1.以root身份打开 /etc/apt/sources.list ,可以用vim或者nano 2.将 http://ports.ubuntu.com/ 全部替换为 http://mirr ...

  8. vc程序设计--图形绘制2

    // 实验2.cpp : 定义应用程序的入口点. // #include "framework.h" #include "实验2.h" #define MAX_ ...

  9. Alpha冲刺 —— 5.3

    这个作业属于哪个课程 软件工程 这个作业要求在哪里 团队作业第五次--Alpha冲刺 这个作业的目标 Alpha冲刺 作业正文 正文 github链接 项目地址 其他参考文献 无 一.会议内容 1.展 ...

  10. [leetcode] 动态规划(Ⅰ)

    这次按通过率从高到低刷题. 本文完成的题目:{338, 1025, 303, 121, 53, 392, 70, 746, 198} ,带有「面试」Tag 的题目:Interview - {1617, ...