【题解】P2831 愤怒的小鸟 - 状压dp
P2831愤怒的小鸟
题目描述
\(Kiana\) 最近沉迷于一款神奇的游戏无法自拔。
简单来说,这款游戏是在一个平面上进行的。
有一架弹弓位于 \((0,0)\) 处,每次 \(Kiana\) 可以用它向第一象限发射一只红色的小鸟,小鸟们的飞行轨迹均为形如 \(y=a*x^2+b*x\) 的曲线,其中 \(a,b\) 是 \(Kiana\) 指定的参数,且必须满足 \(a<0\),\(a,b\) 都是实数。
当小鸟落回地面(即 \(x\) 轴)时,它就会瞬间消失。
在游戏的某个关卡里,平面的第一象限中有 \(n\) 只绿色的小猪,其中第 \(i\) 只小猪所在的坐标为 \((x_i,y_i )\)。
如果某只小鸟的飞行轨迹经过了 \((x_i,y_i )\),那么第 \(i\) 只小猪就会被消灭掉,同时小鸟将会沿着原先的轨迹继续飞行;
如果一只小鸟的飞行轨迹没有经过 \((x_i,y_i )\),那么这只小鸟飞行的全过程就不会对第 \(i\) 只小猪产生任何影响。
例如,若两只小猪分别位于 \((1,3)\) 和 \((3,3)\),\(Kiana\) 可以选择发射一只飞行轨迹为 \(y=−x^2+4*x\) 的小鸟,这样两只小猪就会被这只小鸟一起消灭。
而这个游戏的目的,就是通过发射小鸟消灭所有的小猪。
这款神奇游戏的每个关卡对 \(Kiana\) 来说都很难,所以 \(Kiana\) 还输入了一些神秘的指令,使得自己能更轻松地完成这个游戏。这些指令将在【输入格式】中详述。
假设这款游戏一共有 \(T\) 个关卡,现在 \(Kiana\) 想知道,对于每一个关卡,至少需要发射多少只小鸟才能消灭所有的小猪。由于她不会算,所以希望由你告诉她。
Solution
· 按照初(数)步(据)想(范)法(围),可以很容易就想到设一个集合表示每只猪的状态 即 \(f_S\) 表示状态为 \(S\) 时最少抛物线数
· 可以发现由于必须过原点,所以只用再确定两只猪就可以确 定一条抛物线
· 于是我们可以预处理出 \(l_{i,j}\) 表示在 \(i\) 和 \(j\) 所过的这条 抛物线上的所有猪的集合
· 这样子就很方便了
· 枚举 \(S\),对于每个 \(S\) 枚举 \(i\) 和 \(j\) 则有 : $$f[S\ | \ l_{i,j}] = min(f[S\ |\ l_{i,j}], f_S + 1)$$
· 于是愉快地(?)完成了这道题了
· 算算复杂度...\(O(2^n*n^2)≈8*10^7\)...貌似只能卡常卡过去?有没有优化呢?
· 令 \(x\) 为 \(S\) 内未被打掉的猪中编号最小的,则由 \(S\) 扩展的所有的线都要经过 \(x\)
· 这样子为什么是对的呢?
· 如果说先不打 \(x\),打了 \(x\) 之后的 \(y\) 和 \(z\),那么总要返回来再打一次 \(x\),这样子转移就重复了(虽然仍然是正确的)
· 那么就只用枚举一个 \(j\) 就可以了,转移的速度是 \(O(n)\)的,那么总复杂度为 \(O(2^n*n)≈4*10^6\),顺利跑过啦~
· 顺带一提的是 这道题可以用爆搜+剪枝,而且貌似比dp还要快一点...有兴趣的可以想一想2333
Code
#include<bits/stdc++.h>
#define ld long double
#define F(i, x, y) for(int i = x; i <= y; ++ i)
using namespace std;
const int N = 20;
const double eps = 1e-8; //由于浮点数不太好比大小,所以如果两数之差小于这个超小值则算它们相等
int n, m, all, t;
struct pig{
long double x, y;
}p[N];
int l[N][N];
int d[(1 << N)];
int f[(1 << N)];
int main()
{
scanf("%d", &t);
F(i, 0, 1 << 19)
F(j, 1, 19)
if(! (i & (1 << j - 1)))
{
d[i] = j;
break;
}
while(t --)
{
scanf("%d%d", &n, &m), all = (1 << n) - 1;
F(i, 1, n) scanf("%Lf%Lf", &p[i].x, &p[i].y);
memset(l, 0, sizeof(l));
memset(f, 127, sizeof(f)), f[0] = 0;
F(i, 1, n)
F(j, 1, n)
{
if(fabs(p[i].x - p[j].x) < eps) continue;
ld a = (p[j].x * p[i].y - p[i].x * p[j].y) / (p[i].x * p[j].x * (p[i].x - p[j].x));
ld b = p[i].y / p[i].x - a * p[i].x;
if(a > -eps) continue;
F(k, 1, n)
if(fabs(a * p[k].x * p[k].x + b * p[k].x - p[k].y) < eps)
l[i][j] |= (1 << k - 1);
}
F(i, 0, all)
{
int j = d[i];
f[i | (1 << j - 1)] = min(f[i | (1 << j - 1)], f[i] + 1);
F(k, 1, n) f[i | l[j][k]] = min(f[i | l[j][k]], f[i] + 1);
}
printf("%d\n", f[(1 << n) - 1]);
}
return 0;
}
【题解】P2831 愤怒的小鸟 - 状压dp的更多相关文章
- [Luogu P2831] 愤怒的小鸟 (状压DP)
题面: 传送门:https://www.luogu.org/problemnew/show/P2831 Solution 首先,我们可以先康一康题目的数据范围:n<=18,应该是状压或者是搜索. ...
- 洛谷P2831 愤怒的小鸟(状压dp)
题意 题目链接 Sol 这题....我样例没过就A了??..算了,就当是样例卡精度吧.. 直接状压dp一下,\(f[sta]\)表示干掉\(sta\)这个集合里面的鸟的最小操作数 转移的时候判断一下一 ...
- P2831 愤怒的小鸟 状压dp
这个题主要是预处理比较复杂,先枚举打每只鸟用的抛物线,然后找是否有一个抛物线经过两只鸟,然后就没了. 题干: 题目描述 Kiana 最近沉迷于一款神奇的游戏无法自拔. 简单来说,这款游戏是在一个平面上 ...
- NOIP2016愤怒的小鸟 题解报告 【状压DP】
题目什么大家都清楚 题解 我们知道,三点确定一条抛物线,现在这条抛物线过原点,所以任意两只猪确定一条抛物线.通过运算的出对于两头猪(x1,y1),(x2,y2),他们所在抛物线a=(y1*x2-y2* ...
- NOIP2016愤怒的小鸟 [状压dp]
愤怒的小鸟 题目描述 Kiana 最近沉迷于一款神奇的游戏无法自拔. 简单来说,这款游戏是在一个平面上进行的. 有一架弹弓位于 (0,0) 处,每次 Kiana 可以用它向第一象限发射一只红色的小鸟, ...
- NOIP2017 宝藏 题解报告【状压dp】
题目描述 参与考古挖掘的小明得到了一份藏宝图,藏宝图上标出了 n 个深埋在地下的宝藏屋, 也给出了这 n 个宝藏屋之间可供开发的 m 条道路和它们的长度. 小明决心亲自前往挖掘所有宝藏屋中的宝藏.但是 ...
- luogu2831 [NOIp2016]愤怒的小鸟 (状压dp)
由范围可以想到状压dp 两个点(再加上原点)是可以确定一个抛物线的,除非它们解出来a>=0,在本题中是不合法的 这样的话,我们可以预处理出由任意两个点确定的抛物线所经过的所有的点(要特别规定一下 ...
- [noip2016]愤怒的小鸟<状压dp+暴搜>
题目链接:https://vijos.org/p/2008 现在回过头去看去年的考试题,发现都不是太难,至少每道题都有头绪了... 这道题的数据范围是18,这么小,直接暴力呗,跑个暴搜就完了,时间也就 ...
- 7月15日考试 题解(链表+状压DP+思维题)
前言:蒟蒻太弱了,全打的暴力QAQ. --------------------- T1 小Z的求和 题目大意:求$\sum\limits_{i=1}^n \sum\limits_{j=i}^n kth ...
随机推荐
- Xamarin.Forms客户端第一版
Xamarin.Forms客户端第一版 作为TerminalMACS的一个子进程模块,目前完成第一版:读取展示手机基本信息.联系人信息.应用程序本地化. 功能简介 详细功能说明 关于TerminalM ...
- Android | 教你如何用华为HMS MLKit 图像分割 SDK开发一个证件照DIY小程序
Android | 教你如何用华为HMS MLKit 图像分割 SDK开发一个证件照DIY小程序 引子 上期给大家介绍了如何使用如何用华为HMS MLKit SDK 三十分钟在安卓上开发一个微笑抓 ...
- class-dump的安装和使用
安装步骤 1.下载地址:http://stevenygard.com/projects/class-dump/ 2.打开终端输入 open /usr/local/bin 3.把dmg文件中的class ...
- Module Error (/index.js): error: 'HelloWorld' is defined but never used (no-unused-vars) at src\views\A.vue:9:8:
原因:
- jQuery实现回车键抬起触发事件
$(function(){ //回车键按下触发 $(document).keydown(function(event){ if(event.keyCode==13){ alert("niha ...
- VBScript - 弹出“文件选择对话框”方法大全!
本文记录,VBScript 中,各种打开 "文件选择对话框" 的方法. 实现方法-1 (mshta.exe): 首先,我们要实现的就是,弹出上面的这个"文件选择对话框&q ...
- 分治与递归-Starssen矩阵乘法
代码实现: /** * 矩阵乘法求解 * @author Administrator * */ public class Strassen { public static final int NUMB ...
- MySQl 和 Redis
MySQL MySQL 是关系型数据库,开放源码软件,主要使用持久化存储设备(像磁盘)数据存放在磁盘中,功能强大. 因为磁盘访问速度远远慢于内存,所以访问速度慢 Redis 是非关系型,高性能的key ...
- 从一个慢查询到MySQL字符集编码
从一个慢查询到MySQL字符集编码 目录 从一个慢查询到MySQL字符集编码 1. 问题起源 2. MySQL字符集和字符集排序规则 2.1 字符集相关概念 2.2 MySQL中的字符集和字符集排序规 ...
- TC1.6SourceCode java课程表
/** * @version 2.0 * @author sharks */ /** * Instruction * this version will use IO * apply file to ...