Give you three sequences of numbers A, B, C, then we give you a number X. Now you need to calculate if you can find the three numbers Ai, Bj, Ck, which satisfy the formula Ai+Bj+Ck = X. 

InputThere are many cases. Every data case is described as followed: In the first line there are three integers L, N, M, in the second line there are L integers represent the sequence A, in the third line there are N integers represent the sequences B, in the forth line there are M integers represent the sequence C. In the fifth line there is an integer S represents there are S integers X to be calculated. 1<=L, N, M<=500, 1<=S<=1000. all the integers are 32-integers. 
OutputFor each case, firstly you have to print the case number as the form "Case d:", then for the S queries, you calculate if the formula can be satisfied or not. If satisfied, you print "YES", otherwise print "NO". 
Sample Input

3 3 3
1 2 3
1 2 3
1 2 3
3
1
4
10

Sample Output

Case 1:
NO
YES
NO 题目大意:输入3个数组,3个数组中的元素相加,判断是否能得到x;
题目的输入输出有点恶心人,,,写的时候弄的我晕 ,,哇了好几次
思路 :一开始想到的是暴力枚举,,但是肯定会TLE 看了一下大佬们的博客,,用二分法方便一点 就是让A+B构成一个新的数组sum,x-c[i]构成一个新的数组cc,然后在sum中查找是否存在cc中的元素有的话返回YES否则返回NO
AC代码:(本人不太擅长二分所以代码质量不高)
#include<iostream>
#include<algorithm>
using namespace std;
int a[];
int b[];
int c[];
int sum[*+];
int pos;
int judge(int x){ if(x<sum[]||x>sum[pos-]) return ; int low=,high=pos-;
while(low<=high){
int mid=(high+low)/;
// cout<<mid<<endl;
if(sum[mid]>x){
high=mid-;
}
else if(sum[mid]<x) low=mid+;
else {
return ;
}
}
return ;
} int main()
{
int l,m,n,ll=;
while(cin>>l>>m>>n)
{
ll++;
for(int i=;i<l;i++)
cin>>a[i];
for(int j=;j<m;j++)
cin>>b[j];
for(int k=;k<n;k++)
cin>>c[k]; pos=;
for(int i=;i<l;i++)
for(int j=;j<m;j++){
sum[pos++]=a[i]+b[j];
}
sort(sum,sum+pos); int xx;
cin>>xx; printf("Case %d:\n",ll); for(int i=;i<=xx;i++){
int x,flag=;
cin>>x;
for(int i=;i<n;i++){
if(judge(x-c[i])){
flag=;
break;
}
} if(flag)
printf("YES\n");
else printf("NO\n"); }
}
return ;
}

G - Can you find it? 二分的更多相关文章

  1. codeforces 589G G. Hiring(树状数组+二分)

    题目链接: G. Hiring time limit per test 4 seconds memory limit per test 512 megabytes input standard inp ...

  2. G. Of Zorcs and Axes 二分 + 贪心 —— STL的用法

    http://codeforces.com/gym/101149/problem/G 一开始还以为要用二分图去做,但是复杂度也太高了,O(n * m)的话直接爆炸. 考虑贪心,考虑第i个东西优先选一个 ...

  3. Educational Codeforces Round 37 G. List Of Integers (二分,容斥定律,数论)

    G. List Of Integers time limit per test 5 seconds memory limit per test 256 megabytes input standard ...

  4. ACM-ICPC 2018 南京赛区网络预赛 G. Lpl and Energy-saving Lamps(二分+线段树区间最小)

    During tea-drinking, princess, amongst other things, asked why has such a good-natured and cute Drag ...

  5. 洛谷——P3939 数颜色(暴力vecotr+二分)

    P3939 数颜色 $vecotr$里二分就是好用,全是$STL$ 颜色数目比较少,可以对每一种颜色弄一个$vector$记录一下,查找$l,r$内颜色数为$x$的兔子数,直接在$G[x]$这个$ve ...

  6. POJ3189二分最大流(枚举下界,二分宽度,最大流判断可行性)

    题意:       有n头猪,m个猪圈,每个猪圈都有一定的容量(就是最多能装多少只猪),然后每只猪对每个猪圈的喜好度不同(就是所有猪圈在每个猪心中都有一个排名),然后要求所有的猪都进猪圈,但是要求所有 ...

  7. noip2016十连测round2

    A: Divisors 题意:给定 m 个不同的正整数 a 1 ,a 2 ,...,a m ,请对 0 到 m 每一个 k 计算,在区间 [1,n] 里有多少正整数 是 a 中恰好 k 个数的约数. ...

  8. POJ 2728 Desert King ★(01分数规划介绍 && 应用の最优比率生成树)

    [题意]每条路径有一个 cost 和 dist,求图中 sigma(cost) / sigma(dist) 最小的生成树. 标准的最优比率生成树,楼教主当年开场随手1YES然后把别人带错方向的题Orz ...

  9. POJ 1631 Bridging signals(LIS O(nlogn)算法)

    Bridging signals Description 'Oh no, they've done it again', cries the chief designer at the Waferla ...

随机推荐

  1. POJ 1182食物链(分集合以及加权两种解法) 种类并查集的经典

    题目链接:http://icpc.njust.edu.cn/Problem/Pku/1182/ 题意:给出动物之间的关系,有几种询问方式,问是真话还是假话. 定义三种偏移关系: x->y 偏移量 ...

  2. BFS与DFS常考算法整理

    BFS与DFS常考算法整理 Preface BFS(Breath-First Search,广度优先搜索)与DFS(Depth-First Search,深度优先搜索)是两种针对树与图数据结构的遍历或 ...

  3. 给rm命令加保险

    众所周知,脑残可以学习,但是手残没法治.相信每一位喜欢用终端操作电脑的同学都曾手误使用 rm 命令把不该删除的文件删了.然而,使用 rm 删除的文件是不会进去回收站的. 所以,最好的方法就是我们自定义 ...

  4. python之线程和进程

    进程(process)和线程(thread)是操作系统的基本概念,但是它们比较抽象,不容易掌握.最近,我读到一篇材料,发现有一个很好的类比,可以把它们解释地清晰易懂. 1:计算机的核心是CPU,它承担 ...

  5. Java 泛型数组问题

    Java中不支持泛型数组, 以下代码会编译报错:generic array creation ArrayList<Integer>[] listArr = new ArrayList< ...

  6. Python——图像手绘效果

    1.图像的RGB色彩模式 PIL PIL, Python Image Library PIL库是一个具有强大图像处理能力的第三方库 在命令行下的安装方法: pip install pillow fro ...

  7. Python——office编程

    一.office编程需求 二.Excel编程 import xlrd path=input("输入路径:") workbook=xlrd.open_workbook(path)#打 ...

  8. POI2014 FAR-FarmCraft 树形DP+贪心

    题目链接 https://www.luogu.org/problem/P3574 题意 翻译其实已经很明确了 分析 这题一眼就是贪心啊,但贪心的方法要思索一下,首先是考虑先走时间多的子树,但不太现实, ...

  9. Unity引擎入门——制作第一个2D游戏(2)角色移动与动画

    在上一节的内容里,我们已经创建出了一个主角,也搭建了一个简单的场景. 传送门:https://www.cnblogs.com/zny0222/p/12653088.html 既然有了主角,要怎样才能让 ...

  10. web页面调用支付宝支付

    web页面调用支付宝支付 此文章是前端单独模拟完成支付,若在线上环境则需要后台配合产生签名等参数 在蚂蚁金服开放平台申请沙箱环境 将沙箱环境中的密钥.应用网关.回调地址补全,生成密钥的方法在此 配置好 ...