python机器学习(2:KNN算法)
1、KNN
x1 = numpy.round(numpy.random.normal(115, 10, 100),2)
y1 = numpy.round(numpy.random.normal(95, 6,100),2)
x2 = numpy.round(numpy.random.normal(70, 10, 100),2)
y2 = numpy.round(numpy.random.normal(99, 6, 100),2)
a=[]
b=[]
for i in range(100):
a.append([x1[i],y1[i]])
for i in range(100):
b.append([x2[i],y2[i]])
c=a+b
dataset=array(c)
labels=[]
for i in range(100):
labels.append('*')
for i in range(100):
labels.append('o')
小编自定义两个待分类的数据,也以矩阵的形式存放入;
x=[82,94]
x=array(x)
y=[90,100]
y=array(y)
3、实现过程
# -*- coding:utf-8 -*-
import numpy
from numpy import *
import random
import pylab as pl
import operator
pl.figure(1)
pl.figure(2)
#计算样本的距离,预测类别
def classify(testdata,traindata,labels,k):
#testdate:待分类数集;traindate:分好类的数集;
#tile(a,(b,c)):将a的内容在行上复制b遍,列上复制c遍
trasize=traindata.shape[0] #得到其维数
tradis1=tile(testdata,(trasize,1))-traindata
tradis2=tradis1**2
tradis3=tradis2.sum(axis=1)
tradis=tradis3**0.5 #计算样本与训练数据的距离
sortdis=tradis.argsort()#排序
classcount={}#建立空字典
for i in range(k):#通过循环寻找k个近邻
votelabel=labels[sortdis[i]]
classcount[votelabel]=classcount.get(votelabel,0)+1
sortedclasscount=sorted(classcount.items(),key=operator.itemgetter(1),reverse=True)
return sortedclasscount[0][0]#返回占最大比例的类别
x1 = numpy.round(numpy.random.normal(115, 10, 100),2)
y1 = numpy.round(numpy.random.normal(95, 6,100),2)
x2 = numpy.round(numpy.random.normal(70, 10, 100),2)
y2 = numpy.round(numpy.random.normal(99, 6, 100),2)
a=[]
b=[]
for i in range(100):
a.append([x1[i],y1[i]])
for i in range(100):
b.append([x2[i],y2[i]])
c=a+b
dataset=array(c) #将列表转化为矩阵
labels=[]
for i in range(100):
labels.append('*')
for i in range(100):
labels.append('o')
x=[82,94]
x=array(x)
y=[90,100]
y=array(y)
k=10
labelX=classify(x,dataset,labels,k)
labelY=classify(y,dataset,labels,k)
pl.figure(1)
pl.plot(x1,y1,'*')
pl.plot(x2,y2,'o')
pl.plot(82,94,'.')
pl.plot(96,100,'.')
pl.xlabel('X')
pl.ylabel('Y')
pl.figure(2)
pl.plot(x1,y1,'*')
pl.plot(x2,y2,'o')
pl.plot(82,94,labelX)
pl.plot(96,100,labelY)
pl.show()
4、实现结果
- 引入的数据一定要看清其类别,在这里就要注意列表与矩阵的转化;
- append([x1[i],y1[i]])括号里又加中括号是因为append一次只能添入一个元素
- 将列表转化为矩阵用array
- 矩阵的平方是将矩阵内每个元素平方,与线性代数不同
python机器学习(2:KNN算法)的更多相关文章
- 使用python模拟实现KNN算法
一.KNN简介 1.KNN算法也称为K邻近算法,是数据挖掘分类技术之一.所谓K最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来代表. 2.KNN算法的核心思想是如果一个样本 ...
- 菜鸟之路——机器学习之KNN算法个人理解及Python实现
KNN(K Nearest Neighbor) 还是先记几个关键公式 距离:一般用Euclidean distance E(x,y)√∑(xi-yi)2 .名字这么高大上,就是初中学的两点间的距离 ...
- 机器学习之KNN算法
1 KNN算法 1.1 KNN算法简介 KNN(K-Nearest Neighbor)工作原理:存在一个样本数据集合,也称为训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属 ...
- 机器学习:k-NN算法(也叫k近邻算法)
一.kNN算法基础 # kNN:k-Nearest Neighboors # 多用于解决分裂问题 1)特点: 是机器学习中唯一一个不需要训练过程的算法,可以别认为是没有模型的算法,也可以认为训练数据集 ...
- python机器学习的常用算法
Python机器学习 学习意味着通过学习或经验获得知识或技能.基于此,我们可以定义机器学习(ML)如下 - 它可以被定义为计算机科学领域,更具体地说是人工智能的应用,其为计算机系统提供了学习数据和从经 ...
- 机器学习笔记--KNN算法2-实战部分
本文申明:本系列的所有实验数据都是来自[美]Peter Harrington 写的<Machine Learning in Action>这本书,侵删. 一案例导入:玛利亚小姐最近寂寞了, ...
- Python简单实现KNN算法
__author__ = '糖衣豆豆' from numpy import * from os import listdir import operator #从列方向扩展 #tile(a,(size ...
- JavaScript机器学习之KNN算法
译者按: 机器学习原来很简单啊,不妨动手试试! 原文: Machine Learning with JavaScript : Part 2 译者: Fundebug 为了保证可读性,本文采用意译而非直 ...
- 机器学习笔记--KNN算法1
前言 Hello ,everyone. 我是小花.大四毕业,留在学校有点事情,就在这里和大家吹吹我们的狐朋狗友算法---KNN算法,为什么叫狐朋狗友算法呢,在这里我先卖个关子,且听我慢慢道来. 一 K ...
- 机器学习入门-Knn算法
knn算法不需要进行训练, 耗时,适用于多标签分类情况 1. 将输入的单个测试数据与每一个训练数据依据特征做一个欧式距离. 2. 将求得的欧式距离进行降序排序,取前n_个 3. 计算这前n_个的y值的 ...
随机推荐
- 网络基础:OSI 七层模型、TCP/IP 四层模型
1.Internet历史 1. 1968年由美国ARPA机构提出"资源共享计算机网络”,让ARPA的计算机互联起来,叫做阿帕网;2. 1974年,第一个TCP协议详细说明发布了.3. 一个 ...
- 十六、CI框架之数据库操作get用法
一.使用数据库的Get方法读取内容,如下代码: 二.数据库如下: 二.效果如下: 不忘初心,如果您认为这篇文章有价值,认同作者的付出,可以微信二维码打赏任意金额给作者(微信号:382477247)哦, ...
- Python风格规范分享
今天给大家分享Python 风格规范,以下代码中 Yes 表示推荐,No 表示不推荐. 分号 不要在行尾加分号, 也不要用分号将两条命令放在同一行. 行长度 每行不超过80个字符 以下情况除外: 长的 ...
- HZNU-ACM寒假集训Day7小结 背包DP
背包问题 01背包 状态:f(i,j) 表示只能装前i个物品的情况下,容量为j的背包所能达到的最大总价值 状态转移方程: f(i,j)=max(f(i-1,j),f(i-1,j-w[i])+v[i] ...
- 《机实战》第2章 K近邻算法实战(KNN)
1.准备:使用Python导入数据 1.创建kNN.py文件,并在其中增加下面的代码: from numpy import * #导入科学计算包 import operator #运算符模块,k近邻算 ...
- 吴裕雄--天生自然JAVA SPRING框架开发学习笔记:Spring中Bean的作用域
作用域的种类 Spring 容器在初始化一个 Bean 的实例时,同时会指定该实例的作用域.Spring3 为 Bean 定义了五种作用域,具体如下. 1)singleton 单例模式,使用 sing ...
- The 2019 China Collegiate Pro gramming Contest Harbin Site (F. Fixing Banners)
F. Fixing Banners time limit per test 1 second memory limit per test 512 megabytes input standard in ...
- 每天一点点之数据结构与算法 - 应用 - 分别用链表和数组实现LRU缓冲淘汰策略
一.基本概念: 1.什么是缓存? 缓存是一种提高数据读取性能的技术,在硬件设计.软件开发中都有着非广泛的应用,比如常见的CPU缓存.数据库缓存.浏览器缓存等等. 2.为什么使用缓存?即缓存的特点缓 ...
- 题解P4201: [NOI2008]设计路线
发现给出了一棵树, 不是树的情况直接输出-1 考虑进行DP, 设f[i][0/1/2]为i的子树中选小于等于0/1/2条边修路的方案数, 不妨对于一个节点, 先考虑正好相等的情况, 假设当前扫到了一个 ...
- Java8集合框架——基本知识点
前言 Java的基础集合框架的内容并不复杂,List.Map.Set 中大概10个常见的集合类,建议多看几遍源码(Java8),然后回过头再来看看这些各路博客总结的知识点,会有一种豁然开朗的感觉. 本 ...