1、迁移学习

迁移学习也即所谓的有监督预训练(Supervised pre-training),我们通常把它称之为迁移学习。比如你已经有一大堆标注好的人脸年龄分类的图片数据,训练了一个CNN,用于人脸的年龄识别。然后当你遇到新的项目任务是:人脸性别识别,那么这个时候你可以利用已经训练好的年龄识别CNN模型,去掉最后一层,然后其它的网络层参数就直接复制过来,继续进行训练。这就是所谓的迁移学习,说的简单一点就是把一个任务训练好的参数,拿到另外一个任务,作为神经网络的初始参数值,这样相比于你直接采用随机初始化的方法,精度可以有很大的提高。

图片分类标注好的训练数据非常多,但是物体检测的标注数据却很少,如何用少量的标注数据,训练高质量的模型,比如我们先对imagenet图片数据集先进行网络的图片分类训练。这个数据库有大量的标注数据。

2、IOU(交并比)

物体检测需要定位出物体的bounding box,就像上面的图片一样,我们不仅要定位出车辆的bounding box 我们还要识别出bounding box 里面的物体就是车辆。对于bounding box的定位精度,有一个很重要的概念,因为我们算法不可能百分百跟人工标注的数据完全匹配,因此就存在一个定位精度评价公式:IOU。 
IOU表示了bounding box 与 ground truth 的重叠度,如下图所示:

矩形框A、B的一个重合度IOU计算公式为:

IOU=(A∩B)/(A∪B)
  • 1
  • 2

就是矩形框A、B的重叠面积占A、B并集的面积比例:

IOU=SI/(SA+SB-SI)
  • 1
  • 2

3、NMS

NMS也即非极大值抑制。在最近几年常见的物体检测算法(包括rcnn、sppnet、fast-rcnn、faster-rcnn等)中,最终都会从一张图片中找出很多个可能是物体的矩形框,然后为每个矩形框为做类别分类概率:

就像上面的图片一样,定位一个车辆,最后算法就找出了一堆的方框,我们需要判别哪些矩形框是没用的。 
所谓非极大值抑制:先假设有6个矩形框,根据分类器类别分类概率做排序,从小到大分别属于车辆的概率分别为A、B、C、D、E、F。

(1)从最大概率矩形框F开始,分别判断A~E与F的重叠度IOU是否大于某个设定的阈值;

(2)假设B、D与F的重叠度超过阈值,那么就扔掉B、D;并标记第一个矩形框F,是我们保留下来的。

(3)从剩下的矩形框A、C、E中,选择概率最大的E,然后判断E与A、C的重叠度,重叠度大于一定的阈值,那么就扔掉;并标记E是我们保留下来的第二个矩形框。

就这样一直重复,找到所有被保留下来的矩形框。

物体检测中常用的几个概念迁移学习、IOU、NMS理解的更多相关文章

  1. cs231n---语义分割 物体定位 物体检测 物体分割

    1 语义分割 语义分割是对图像中每个像素作分类,不区分物体,只关心像素.如下: (1)完全的卷积网络架构 处理语义分割问题可以使用下面的模型: 其中我们经过多个卷积层处理,最终输出体的维度是C*H*W ...

  2. rcnn ->fast rcnn->faster rcnn物体检测论文

    faster rcnn中的rpn网络: 特征可以看做一个尺度51*39的256通道图像,对于该图像的每一个位置,考虑9个可能的候选窗口:三种面积{1282,2562,5122}×三种比例{1:1,1: ...

  3. 利用modelarts和物体检测方式识别验证码

    近来有朋友让老山帮忙识别验证码.在github上查看了下,目前开源社区中主要流行以下几种验证码识别方式: tesseract-ocr模块: 这是HP实验室开发由Google 维护的开源 OCR引擎,内 ...

  4. Object-Detection中常用的概念解析

    常用的Region Proposal Selective Search Edge Boxes Softmax-loss softmax-loss层和softmax层计算大致是相同的,softmax是一 ...

  5. ArcGIS中的坐标系:基本概念和常用操作(一)

    本文呢是主要是借鉴李郎平李大大的博士论文和百度百科,里面还有一点点我自己的理解,希望能帮助自己加深对于坐标系的认识. 李大大的博客:http://blog.sciencenet.cn/u/Brume ...

  6. 物体检测丨Faster R-CNN详解

    这篇文章把Faster R-CNN的原理和实现阐述得非常清楚,于是我在读的时候顺便把他翻译成了中文,如果有错误的地方请大家指出. 原文:http://www.telesens.co/2018/03/1 ...

  7. OpenCV学习 物体检测 人脸识别 填充颜色

    介绍 OpenCV是开源计算机视觉和机器学习库.包含成千上万优化过的算法.项目地址:http://opencv.org/about.html.官方文档:http://docs.opencv.org/m ...

  8. 目标检测算法(1)目标检测中的问题描述和R-CNN算法

    目标检测(object detection)是计算机视觉中非常具有挑战性的一项工作,一方面它是其他很多后续视觉任务的基础,另一方面目标检测不仅需要预测区域,还要进行分类,因此问题更加复杂.最近的5年使 ...

  9. 利用opencv进行移动物体检测

    进行运动物体检测就是将动态的前景从静态的背景中分离出来.将当前画面与假设是静态背景进行比较发现有明显的变化的区域,就可以认为该区域出现移动的物体.在实际情况中由于光照阴影等因素干扰比较大,通过像素直接 ...

随机推荐

  1. 第三篇:Vue指令

    Vue指令 1.文本指令相关 v-*是Vue指令,会被vue解析,v-text="num"中的num是变量(指令是有限的,不可以自定义) v-text是原样输出渲染内容,渲染控制的 ...

  2. DFS(深度优先搜索遍历求合格条件总数)--07--DFS--蓝桥杯方格填数

    此题方法多种,我用规范的DFS来求解 题目:方格填数 如下的10个格子,填入0~9的数字.要求:连续的两个数字不能相邻. (左右.上下.对角都算相邻)一共有多少种可能的填数方案?   输出 请填写表示 ...

  3. 工作问题整理-- sqlserver 新增参数限制,maven pom邮件发送

    1.SqlServer连续新增参数限制 com.microsoft.sqlserver.jdbc.SQLServerException: 传入的请求具有过多的参数.该服务器支持最多 2100 个参数. ...

  4. Elasticsearch 使用集群

    章节 Elasticsearch 基本概念 Elasticsearch 安装 Elasticsearch 使用集群 Elasticsearch 健康检查 Elasticsearch 列出索引 Elas ...

  5. OnPaint中画图遇到的问题

    在OnPaint函数中有CPaintDC dc1(this);这句话,在画图时,千万不要把它去掉,否则会造成消息队列阻塞.例如定时器.Invalidate()等都会失效. 造成这种现象的原因是: CP ...

  6. php base64编码图片上传七牛

    上网上找了好几个例子 都是自己写curl上传 感觉七牛这么多年了不应该sdk不提供一个方法 然后试 试 试 显示put 方式 上传上去 就是个字符串 后来换成文件上传方法 putFile 成了 不废话 ...

  7. UVALive 6763 / CSU 1446

    今天比赛的时候拿到的第一道题,其实挺简单的,求两等差序列中相同元素的个数,我想了一下就觉得,只要找到了第一个相等的点,然后后面求最大公约数就可以直接得到结果了 网上叫什么拓展欧几里得,我反正是按照我们 ...

  8. SQL常用短语小记-持续更新

    创建链接服务器语句 --//创建链接服务器[在本地服务器创建] exec sp_addlinkedserver '链接服务器名称','','SQLOLEDB','远程服务器地址' -- exec sp ...

  9. django-替代为自定义的User model

    https://docs.djangoproject.com/en/dev/topics/auth/customizing/#substituting-a-custom-user-model Subs ...

  10. Spring框架之一 读取配置文件

    以下代码都是来源于官方源码(Spring-4.3.18.RELEASE),此处只是为自己以后深啃先布局出大概流程,请各看官不要浪费时间看 说明: .. 表示省略代码, // 后的如果不是源码自带则为当 ...