2-SAT(HDU-3062 party)
2-SAT(HDU-3062 party)
解决问题类型:
书本定义:给一个布尔方程,判断是否存在一组解使整个方程为真,被称为布尔方程可满足性问题(SAT)
因为本题只有0,1(丈夫 妻子只能去一个人),所以是2-SAT。
算法思想:
根据题意:对于(a ,a' )(b ,b' ),如果a ,b 构成仇恨问题,那么a 若出席,b' 一定出席,b若出席,a ‘ 一定出席;据此他们之间可以建有向边(有向边的意义一定要明白! ! !代码中建边时已经标注)。而强连通分量的特点就是可以缩点,判断两点之间是否可以相互到到达(对此图tarjan缩点,若一对夫妻在一个强连通分量中,表示这对夫妻之间有一条逻辑上的有向边)
可能脑子太迟钝了,好不容易悟出来,不过还是很开心
可能因为学了数据结构,觉得邻接表就是单链表的头插法,有木有!!!
撸代码:
#include<stdio.h>
#include<string.h>
#include<stack>
using namespace std;
struct node
{
int v,nex;
} edge[1000007];
int dfn[2007],low[2007],instack[2007],head[2007],index;
int cir,belong[2007],cnt;
stack<int>s;
void init()
{
for(int i=0; i<=2005; i++)
{
head[i]=-1;
dfn[i]=0;
low[i]=0;
instack[i]=0;
belong[i]=0;
}
while(!s.empty())
s.pop();
cir=0;
index=0;
cnt=0;
}
void add_edge(int u,int v)
{
edge[cnt].v=v;
edge[cnt].nex=head[u];
head[u]=cnt++;
}/*邻接表相当于链表的头插法*/
void Tarjan(int u)
{
instack[u]=1;
s.push(u);
dfn[u]=low[u]=++index;
for(int i=head[u]; i!=-1; i=edge[i].nex)
{
int v=edge[i].v;
if(!dfn[v])
{
Tarjan(v);
low[u]=min(low[u],low[v]);
}
else if(instack[v])
{
low[u]=min(low[u],dfn[v]);
}
}
if(low[u]==dfn[u])
{
++cir;
int node;
do
{
node=s.top();
s.pop();
instack[node]=0;
belong[node]=cir;
}
while(node!=u);
}
return ;
}
int main()
{
int n,m;
while(~scanf("%d%d",&n,&m))
{
init();
int a,b,c,d;
for(int i=1; i<=m; i++)
{
scanf("%d%d%d%d",&a,&b,&c,&d);
a=(a<<1)+c;
b=(b<<1)+d;/*a b 不能在一块*/
add_edge(a,b^1);
add_edge(b,a^1);
/*!!! 为什么没有a^1和b^1:有向边意义:若选a必选b^1,b同理*/
}
for(int i=0; i<n*2; i++)
if(!dfn[i])
Tarjan(i);
int flag=0;
for(int i=0; i<n; i++)
{
if(belong[i<<1]==belong[(i<<1)^1])/*!!!若某0 1点在一个连通分量,说明两个都要选,自相矛盾*/
flag=1;
}
if(flag)
printf("NO\n");
else
printf("YES\n");
}
return 0;
}
DREAM_yao:若有错误,热烈欢迎指正
2-SAT(HDU-3062 party)的更多相关文章
- HDU 3062 && HDU 1824 && POJ 3678 && BZOJ 1997 2-SAT
一条边<u,v>表示u选那么v一定被选. #include <iostream> #include <cstring> #include <cstdio> ...
- hdu 3062 Party 2-SAT
题目链接:HDU - 3062 有n对夫妻被邀请参加一个聚会,因为场地的问题,每对夫妻中只有1人可以列席.在2n 个人中,某些人之间有着很大的矛盾(当然夫妻之间是没有矛盾的),有矛盾的2个人是不会同时 ...
- hdu 3062 2-sat入门题
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3062 #include <cstdio> #include <cmath> # ...
- hdu 3062+1824(2-sat入门)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3062 思路:根据矛盾关系连边(如果a与b矛盾,则连边a'->b,b'->a),然后强连通缩 ...
- HDU 3062:Party(2-SAT入门)
http://acm.hdu.edu.cn/showproblem.php?pid=3062 题意:中文. 思路:裸的2-SAT.判断二元组的两个人是否在同一个强连通分量. 学习地址:http://w ...
- HDU 3062 Party
Party Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submi ...
- hdu 3062 2-SAT问题
思路:裸的2-SAT. #include<map> #include<set> #include<cmath> #include<queue> #inc ...
- hdu 3062
2-SAT的入门题: 网上说这个算法最好的入门教材是:伍昱的<由对称性解2-SAT问题>的ppt和赵爽的论文<2-SAT 解法浅析>: 看了一下伍昱的ppt,很好理解! 而这道 ...
- 图论(2-sat):HDU 3062 Party
Party Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submi ...
- hdu 3062 2-Sat入门
开始学习2-Sat,前面看了对称性解决2-sat的ppt,很有帮助. 题意:n对夫妻,夫妻需要出席一人,给出不相容的关系,求每对是否能完成出席方案. 思路:通过关系建图,Tarjan缩点,然后进行判断 ...
随机推荐
- 改进"尽最大努力交付"的服务
改进"尽最大努力交付"的服务 网络层的作用就是负责在不同的网段尽力转发数据包,但是负责中专数据包的路由器并不关心数据包的内容和优先顺序.而是先到达的数据包先处理,后到达的数据包排队 ...
- Haproxy 使用block 阻止域名访问到某个子目录报403
配置教程如下: acl is_https_com hdr_beg(host) www.baidu.com #定义规则域名 acl api_block_url_web url_dir -i /web/ ...
- 连接器巨头Molex莫仕大裁员,CEO更迭
序言:中美贸易战的大环境下,美国多方面限制对华出口电子科技,其中影响最大的莫过于限制芯片出口,中国本土芯片和电子产业也在蓬勃的发展.根据正能量电子了解连接器巨头MOLEX莫仕公司收入的1/3是来自于对 ...
- 从头认识js-js的发展历史
JavaScript简介 JavaScript诞生于1995年,当时,它的主要目的是处理以前有服务端语言(如Perl)负责的一些输入验证操作. JavaScript简史 1995年2月当时就职于Net ...
- HTML5 Canvas(基础知识)
最近笔者在学习HTML5的新元素<canvas>,会分享一些基础知识以及小例子,最终使用<canvas>实现一个绘制简单图表(条形图.线图或者饼图)的js库,会更新一到两篇文章 ...
- js数组冒泡排序、快速排序、插入排序
1.冒泡排序 //第一种 function bubblesort(ary){ for(var i=0;i<ary.length-1;i++){ for(var j=0;j<ary.leng ...
- Access Token 机制详解
我们在访问很多大公司的开放 api 的时候,都会发现这些 api 要求传递一个 access token 参数.这个参数是什么呢?需要去哪里获取这个 access token 呢? access to ...
- 峰哥说技术:09-Spring Boot整合JSP视图
Spring Boot深度课程系列 峰哥说技术—2020庚子年重磅推出.战胜病毒.我们在行动 09 峰哥说技术:Spring Boot整合JSP视图 一般来说我们很少推荐大家在Spring boot ...
- 【OO第三次课下讨论】农场主的饲料分配问题
需求分析与项目设计 本思考题的设计需求是力图找到一个简单且可行的饲料分配方案,由于不涉及到饲料价格或者是营养均衡之类的优化问题,因此在假设总的饲料量必能满足所有动物的热量需求的前提下,我们只需要采 ...
- 18 JpaRepository和JpaSpecificationExecutor
继承JpaRepository后的方法列表 JpaRepository findAll() List<T> findAll(Sort) List<T> findAll(Iter ...