Day7 - H - 青蛙的约会 POJ - 1061
我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。
Input
Output
Sample Input
1 2 3 4 5
Sample Output
4 -1s 思路:扩展欧几里德,跳一次花费时间相同,说明跳的次数一样,相遇满足条件x+mt与y+nt对L同余,即:x+mt=y+nt+kL
即:(m-n)t-kL=y-x,t与k是未知数,a=m-n, b=-k,带入扩展欧几里德,得到gcd(a,b),若gcd(a,b)|y-x,则有解,否则无解
算出来的t,k是方程的一个特解,相当于at+bk=gcd(a,b),先将t*=(y-x)/gcd(a,b),再根据找最小解的情况解出答案即可
如何进行:
两个方程:
ax+by=gcd(a,b)
ax0+by0=gcd(a,b)
两式相减, 有 a(x-x0) = b(y0-y)
同除gcd(a,b), a/gcd(a,b)与b/gcd(a,b)互质,所以 b|x-x0, y同理, 又因为x与y相加满足(1)式,相当于一个增大一个减小
得到:
x = x0 + t * b/gcd(a,b)
y = y0 - t * a/gcd(a,b)
参考博客:https://www.cnblogs.com/caibingxu/p/10850664.html
本题代码:
typedef long long LL;
void ex_gcd(LL a, LL b, LL &x, LL &y, LL &d) {
if(!b) {
d = a, x = , y = ;
} else {
ex_gcd(b, a%b, y, x, d);
y -= (a/b)*x;
}
}
int main(){
LL x, y, m, n, L, ansx, ansy, d;
scanf("%lld%lld%lld%lld%lld", &x, &y, &m, &n, &L);
ex_gcd(m-n, -L, ansx, ansy, d);
if((y-x) % d != ) {
printf("Impossible\n");
return ;
}
LL A = -L / d;
ansx *= (y-x)/d;
ansx = (ansx % A + A)%A;
printf("%lld\n", ansx);
return ;
}
注意所求的最小解是大于0的,需要判断一下
Day7 - H - 青蛙的约会 POJ - 1061的更多相关文章
- AC日记——青蛙的约会 poj 1061
青蛙的约会 POJ - 1061 思路: 扩展欧几里得: 设青蛙们要跳k步,我们可以得出式子 m*k+a≡n*k+b(mod l) 式子变形得到 m*k+a-n*k-b=t*l (m-n)*k-t ...
- 青蛙的约会 poj 1061
青蛙的约会 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 86640 Accepted: 15232 Descripti ...
- 青蛙的约会 - poj 1061(扩展欧几里得)
分析:这个东西在数论里面应该叫做不定方程式,可以搜一下,有很精彩的证明,先求出来方程式的一组特解,然后用这组特解来求通解,但是求出来特解之后怎么求这些解里面的最小非负x值?我们知道 x = x0 + ...
- 青蛙的约会 POJ - 1061 (exgcd)
两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特 ...
- C - 青蛙的约会 POJ - 1061 (扩展欧几里得)
题目链接:https://cn.vjudge.net/contest/276376#problem/C 题目大意:中文题目. 具体思路:扩展gcd,具体证明过程看图片(就这麽个题我搞了一天,,,). ...
- poj 1061 青蛙的约会 拓展欧几里得模板
// poj 1061 青蛙的约会 拓展欧几里得模板 // 注意进行exgcd时,保证a,b是正数,最后的答案如果是负数,要加上一个膜 #include <cstdio> #include ...
- ACM: POJ 1061 青蛙的约会 -数论专题-扩展欧几里德
POJ 1061 青蛙的约会 Time Limit:1000MS Memory Limit:10000KB 64bit IO Format:%lld & %llu Descr ...
- POJ.1061 青蛙的约会 (拓展欧几里得)
POJ.1061 青蛙的约会 (拓展欧几里得) 题意分析 我们设两只小青蛙每只都跳了X次,由于他们相遇,可以得出他们同余,则有: 代码总览 #include <iostream> #inc ...
- poj 1061 青蛙的约会 (扩展欧几里得模板)
青蛙的约会 Time Limit:1000MS Memory Limit:10000KB 64bit IO Format:%I64d & %I64u Submit Status ...
随机推荐
- Apache Shiro安全(权限框架)学习笔记二
课程目标 通过学习本课程掌握权限管理的设计思想及方法,使用Shiro框架完成权限管理功能开发. 1. 理解基于资源的权限管理方法. 2. 掌握权限管理的数据模型. 3. 掌握不使用shiro开发 ...
- Topcoder SRM 590 Fox And City
Link 注意到原图给的是一个无向连通图. 如果在原图中两点之间有一条无向边,那么这两点到\(1\)的距离之差不大于\(1\). 这个命题的正确性是显然的,我们考虑它的逆命题: 给定每个点到\(1\) ...
- tensorflow版helloworld---拟合线性函数的k和b(02-4)
给不明白深度学习能干什么的同学,感受下深度学习的power import tensorflow as tf import numpy as np #使用numpy生成100个随机点 x_data=np ...
- 《SQL 进阶教程》 查找局部不一致的数据
-- 从下面这张商品表里找出价格相等的商品的组合 select * from products p1LEFT JOIN products p2on p1.price = p2.price and p1 ...
- 最近公共祖先(LCA)问题
目录 最近公共祖先 1.向上标记法 2.树上倍增法 3.Tarjan算法 最近公共祖先 定义:给定一颗有根树,若结点 z 既是 x 的祖先,也是 y 的祖先,则称 z 是 x,y 的公共祖先.在 x, ...
- Atcoder Beginner Contest 139E(模拟,思维)
#define HAVE_STRUCT_TIMESPEC#include<bits/stdc++.h>using namespace std;int n;int a[1007][1007] ...
- JSTL fn:replace()函数替换 换行符
转自:http://blog.163.com/chenjie_8392/blog/static/439339842010513128139/ 近日在使用textarea时,输入了回车,为了将texta ...
- 1 (msql实战) 基础架构
mysql> select * from T where ID=10: 我们看到的只是输入一条语句,返回一个结果,却不知道这条语句在 MySQL 内部的执行过程. 所以今天我想和你一起把 MyS ...
- KVM虚拟化与容器的区别理解
1.KVM虚拟化是linux内核的虚拟化,提供了内核级别的虚拟进程管理,客户空间的程序QEMU-KVM可以提供资源清单和模拟设备,与KVM交互 QEMU-KVM--可以在宿主机器,建立网络(网桥交换机 ...
- 3676: [Apio2014]回文串 求回文串长度与出现次数的最大值
「BZOJ3676」[Apio2014] 回文串 Description 考虑一个只包含小写拉丁字母的字符串s.我们定义s的一个子串t的“出 现值”为t在s中的出现次数乘以t的长度.请你求出s的所 ...