无向图求割(找桥)tarjan
本博客参考了李煜东的《算法竞赛进阶指南》,大家要是觉得这篇文章写的不错请大家支持正版。豆瓣图书
我在之前的博客中讲解了搜索序时间戳,这次我们讲讲追溯值的概念。
追溯值:
设subtree(x)表示搜索树中,以X为根的子树。low[x]定义为一下节点的时间戳最小值:
1.subtree(x)中的节点。
2.通过1条不在搜素树上的边,能够到达subtree(x)的节点。


以上图为例。为了叙述简便,我们用时间戳代替节点编号。subtree(2)={2,3,4,5}。零位,节点1通过搜索树边的(1,5)能够到达subtree(2)。所以low[2]=1。根据定义拉算的话,首先应该让low[x]=dfn[x],然后考虑从x出发的每条边(x,y);
若在搜素树上x是y 的父节点,则令low[x]=min(low[x],low[y]).
若无向边(x,y)不是搜索树边,则令low[x]=min(low[x],dfn[y]).
该图中写出了追溯值的 图。

割边的判定法则:
无向边x---y如果是桥,当且仅当搜索树上存在x的存在y满足 dfn[x]<low[y],说明从y出发不可能通过非搜索树边回到x。也即是x--y是桥。
//模板
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <vector>
#include <map>
#include <stack>
using namespace std;
const int N=100010;
int head[N],ver[N*2],Next[N*2];
int dfn[N],low[N],n,m,tot,num;
bool brige[N*2];
void add(int x,int y){
ver[++tot]=y,Next[tot]=head[x],head[x]=tot;
}
void tarjan(int x,int inedge)
{
dfn[x]=low[x]=++num;
for(int i=head[x];i;i=Next[i])
{
int y=ver[i];
if(!dfn[y])
{
tarjan(y,i);
low[x]=min(low[x],low[y]);
if(low[y]>dfn[x])
{
brige[i]=brige[i^1]=1;
}
}
else if(i!=(inedge^1))
low[x]=min(low[x],dfn[y]);
}
}
int main()
{
cin>>n>>m;
tot=1;
for(int i=1;i<=m;i++)
{
int x,y;
scanf("%d %d",&x,&y);
add(x,y);
add(y,x);
}
for(int i=1 ;i<=n;i++)
if(!dfn[i]) tarjan(i,0);
int ans=0;
for(int i=2;i<tot;i+=2)
{
if(brige[i])
{
printf("%d %d\n",ver[i^1],ver[i]);
}
}
}
无向图求割(找桥)tarjan的更多相关文章
- UVA 315 :Network (无向图求割顶)
题目链接 题意:求所给无向图中一共有多少个割顶 用的lrj训练指南P314的模板 #include<bits/stdc++.h> using namespace std; typedef ...
- poj 1144 Network(无向图求割顶数)
题目链接:poj 1144 题意就是说有 n(标号为 1 ~ n)个网点连接成的一个网络,critical places 表示删去后使得图不连通的顶点,也就是割顶,求图中割顶的个数. 直接上大白书上的 ...
- 无向图的割点和桥 tarjan 模板
#include <bits/stdc++.h> using namespace std; const int MAXN = 20005; const int MAXM = 100005; ...
- tarjan算法--求无向图的割点和桥
一.基本概念 1.桥:是存在于无向图中的这样的一条边,如果去掉这一条边,那么整张无向图会分为两部分,这样的一条边称为桥无向连通图中,如果删除某边后,图变成不连通,则称该边为桥. 2.割点:无向连通图中 ...
- 【并查集缩点+tarjan无向图求桥】Where are you @牛客练习赛32 D
目录 [并查集缩点+tarjan无向图求桥]Where are you @牛客练习赛32 D PROBLEM SOLUTION CODE [并查集缩点+tarjan无向图求桥]Where are yo ...
- 求 无向图的割点和桥,Tarjan模板
/* 求 无向图的割点和桥 可以找出割点和桥,求删掉每个点后增加的连通块. 需要注意重边的处理,可以先用矩阵存,再转邻接表,或者进行判重 */ const int MAXN = 10010; cons ...
- 求无向图的割点和桥模板(tarjan)
一.基本概念 1.桥:若无向连通图的边割集中只有一条边,则称这条边为割边或者桥 (离散书上给出的定义.. 通俗的来说就是无向连通图中的某条边,删除后得到的新图联通分支至少为2(即不连通: 2.割点:若 ...
- Tarjan找桥和割点与点连通分量与边连通分量【未成形】
之前只学了个强连通Tarjan算法,然后又摸了缩点操作: 然后今天在lightoj摸了一道模板题,是求所有桥的题: 然后发现,要把:割点,割点集合,双连通,最小割边集合(桥),点连通分量,边连通分量都 ...
- UVA 796 Critical Links(无向图求桥)
题目大意:给你一个网络要求这里面的桥. 输入数据: n 个点 点的编号 (与这个点相连的点的个数m) 依次是m个点的 输入到文件结束. 桥输出的时候需要排序 知识汇总: 桥: 无向连通 ...
随机推荐
- Python库-Matplotlib
Matplotlib官网https://matplotlib.org,Matplotlib是一个Python的2D绘图库. 可视化是整个数据分析的关键辅助工具,可以清晰的理解数据. 折线图(用于显示数 ...
- 关于redis单线程的分析
redis为什么那么快?结论有三点,大家都知道,这里主要是分析. 首先第一点 redis是内存访问的,所以快 当然这个大家都知道,所以不是重点 io密集型和cpu密集型 一般我们把任务分为io密集型和 ...
- Idea离线安装plugins插件 如Lombok
由于公司不允许使用外网,之前用的idea 15 安装了一次.但是idea15的提示不够友好,今天升级idea2017.3.2,同样又需要安装,那就写个教程吧. 网上其他的安装教程不通用,也是针对不同i ...
- DVWA渗透笔记
Command Injection Low <?php if( isset( $_POST[ 'Submit' ] ) ) { // Get input $target = $_REQUEST[ ...
- IDEA我常用的快捷键
IDEA快捷键 全屏编写代码:Ctrl+Shift+F12
- Android调用系统设置
最近,弄了一下,调用系统设置的方法,Android4.0的系统,下面的所有设置项,都亲测可以调用.首先调用的方式如下: Intent mintent_setting_time = new Intent ...
- timer和ScheduledThreadPoolExecutor定时任务和每日固定时间执行
//ScheduledThreadPoolExecutor每三秒执行一次 public static void main(String[] args) { ScheduledThread ...
- 用多线程,实现并发,TCP
首先,开启新的线程,是不会新开辟内存空间的,即,子线程和主线程 都在同一个进程里,也就是主进程里,用os.pid(),os.ppid() 服务器: 方式一:Thread实例化 def task(con ...
- 用Java代码来校验QQ号
校验qq号码: 1.要求必须是5-15位数字 2.0不能开头 分析: A:键盘录入一个qq号码 B:写一个功能实现校验 C:调用功能,输出结果. 代码实现:public class RegexDemo ...
- orcale 树形结构查询
接到需求是要在一个表中(表结构为主键id和父id)循环显示数据,类似于省市县++这种情况 也可能不只有三级子菜单 id name parentid 1 a 0 2 ...