先运行main.py进行文本序列化,再train.py模型训练

dataset.py

from torch.utils.data import DataLoader,Dataset
import torch
import os
from utils import tokenlize
import config class ImdbDataset(Dataset):
def __init__(self,train=True):
super(ImdbDataset,self).__init__()
data_path = r"H:\073-nlp自然语言处理-v5.bt38[周大伟]\073-nlp自然语言处理-v5.bt38[周大伟]\第四天\代码\data\aclImdb_v1\aclImdb"
data_path += r"\train" if train else r"\test"
self.total_path = []
for temp_path in [r"\pos",r"\neg"]:
cur_path = data_path + temp_path
self.total_path += [os.path.join(cur_path,i) for i in os.listdir(cur_path) if i.endswith(".txt")] def __getitem__(self, idx):
file = self.total_path[idx]
review = open(file,encoding="utf-8").read()
review = tokenlize(review)
label = int(file.split("_")[-1].split(".")[0])
label = 0 if label < 5 else 1
return review,label def __len__(self):
return len(self.total_path) def collate_fn(batch):
'''
对batch数据进行处理
:param batch:
:return:
'''
reviews,labels = zip(*batch)
reviews = torch.LongTensor([config.ws.transform(i,max_len=config.max_len) for i in reviews])
labels = torch.LongTensor(labels)
return reviews,labels def get_dataloader(train):
imdbdataset = ImdbDataset(train=True)
batch_size = config.train_batch_size if train else config.test_batch_size
return DataLoader(imdbdataset,batch_size=batch_size,shuffle=True,collate_fn=collate_fn) if __name__ == '__main__':
# dataset = ImdbDataset(train=True)
# print(dataset[1])
for idx,(review,label) in enumerate(get_dataloader(train=True)):
print(review)
print(label)
break

  utils.py

"""
实现额外的方法
"""
import re def tokenlize(sentence):
"""
进行文本分词
:param sentence: str
:return: [str,str,str]
""" fileters = ['!', '"', '#', '$', '%', '&', '\(', '\)', '\*', '\+', ',', '-', '\.', '/', ':', ';', '<', '=', '>',
'\?', '@', '\[', '\\', '\]', '^', '_', '`', '\{', '\|', '\}', '~', '\t', '\n', '\x97', '\x96', '”', '“', ]
sentence = sentence.lower() #把大写转化为小写
sentence = re.sub("<br />"," ",sentence)
# sentence = re.sub("I'm","I am",sentence)
# sentence = re.sub("isn't","is not",sentence)
sentence = re.sub("|".join(fileters)," ",sentence)
result = [i for i in sentence.split(" ") if len(i)>0] return result

word_sequence.py

'''
文本序列化
''' class WordSequence():
UNK_TAG = "<UNK>"
PAD_TAG = "<PAD>"
UNK = 1
PAD = 0 def __init__(self):
self.dict = {
self.UNK_TAG:self.UNK,
self.PAD_TAG:self.PAD
}
self.count = {} def fit(self,sentence):
'''
统计词频
:param sentence:
:return:
'''
for word in sentence:
self.count[word] = self.count.get(word,0)+1 def build_vocab(self,min_count=0,max_count = None,max_features = None):
"""
根据条件构建 词典
:param min_count:最小词频
:param max_count: 最大词频
:param max_features: 最大词语数
:return:
"""
if min_count is not None:
self.count = {word:count for word,count in self.count.items() if count >min_count}
if max_count is not None:
self.count = {word:count for word,count in self.count.items() if count<max_count}
if max_features is not None:
#排序
self.count = dict(sorted(self.count.items(),lambda x:x[-1],reverse=True)[:max_features]) for word in self.count:
self.dict[word] = len(self.dict) #每次word对应一个数字 #把dict进行翻转
self.inverse_dict = dict(zip(self.dict.values(),self.dict.keys())) def transform(self,sentence,max_len =None):
'''
把句子转化为数字序列
:param sentence:
:return:
'''
if len(sentence) > max_len:
sentence = sentence[:max_len]
else:
sentence = sentence + [self.PAD_TAG]*(max_len-len(sentence))
return [self.dict.get(i,1) for i in sentence] def inverse_transform(self,incides):
"""
把数字序列转化为字符
:param incides:
:return:
"""
return [self.inverse_dict.get(i,"<UNK>") for i in incides] def __len__(self):
return len(self.dict) if __name__ == '__main__':
sentences = [["今天","天气","很","好"],
["今天","去","吃","什么"]] ws = WordSequence()
for sentence in sentences:
ws.fit(sentence) ws.build_vocab(min_count=0)
print(ws.dict)
ret = ws.transform(["好","热","呀","呀","呀","呀","呀","呀","呀"],max_len=5)
print(ret)
ret = ws.inverse_transform(ret)
print(ret)

  main.py

from word_sequence import WordSequence
from dataset import get_dataloader
import pickle
from tqdm import tqdm if __name__ == '__main__':
ws = WordSequence()
train_data = get_dataloader(True)
test_data = get_dataloader(False)
for reviews,labels in tqdm(train_data,total=len(train_data)):
for review in reviews:
ws.fit(review)
for reviews,labels in tqdm(test_data,total=len(test_data)):
for review in reviews:
ws.fit(review)
print("正在建立...")
ws.build_vocab()
print(len(ws))
pickle.dump(ws,open("./models/ws.pkl","wb"))

  model.py

"""
构建模型
"""
import torch.nn as nn
import config
import torch.nn.functional as F class ImdbModel(nn.Module):
def __init__(self):
super(ImdbModel,self).__init__()
self.embedding = nn.Embedding(num_embeddings=len(config.ws),embedding_dim=300,padding_idx=config.ws.PAD)
self.fc = nn.Linear(config.max_len*300,2) def forward(self,input):
'''
:param input:
:return:
'''
input_embeded = self.embedding(input) input_embeded_viewed = input_embeded.view(input_embeded.size(0),-1) out = self.fc(input_embeded_viewed)
return F.log_softmax(out,dim=-1)

  LSTMmodel.py

"""
构建模型
"""
import torch.nn as nn
import torch
import config
import torch.nn.functional as F class ImdbModel(nn.Module):
def __init__(self):
super(ImdbModel,self).__init__()
self.embedding = nn.Embedding(num_embeddings=len(config.ws),embedding_dim=300,padding_idx=config.ws.PAD)
self.lstm = nn.LSTM(input_size=200,hidden_size=64,num_layers=2,batch_first=True,bidirectional=True,dropout=0.5)
self.fc1 = nn.Linear(64*2,64)
self.fc2 = nn.Linear(64,2) def forward(self,input):
'''
:param input:
:return:
'''
input_embeded = self.embedding(input) #[batch_size,seq_len,200] output,(h_n,c_n) = self.lstm(input_embeded)
out = torch.cat(h_n[-1,:,:],h_n[-2,:,:],dim=-1) #拼接正向最后一个输出和反向最后一个输出 #进行全连接
out_fc1 = self.fc1(out)
#进行relu
out_fc1_relu = F.relu(out_fc1)
#全连接
out = self.fc2(out_fc1_relu)
return F.log_softmax(out,dim=-1)

  train.py

'''
进行模型的训练
'''
import torch import config
from model import ImdbModel
from dataset import get_dataloader
from torch.optim import Adam
from tqdm import tqdm
import torch.nn.functional as F
import numpy as np
import matplotlib.pyplot as plt
from eval import eval model = ImdbModel().to(config.device)
optimizer = Adam(model.parameters(),lr=0.001)
loss_list = [] def train(epoch):
train_dataloader = get_dataloader(train=True)
bar = tqdm(train_dataloader,total=len(train_dataloader)) for idx,(input,target) in enumerate(bar):
optimizer.zero_grad()
input = input.to(config.device)
target = target.to(config.device)
output = model(input)
loss = F.nll_loss(output,target)
loss.backward()
loss_list.append(loss.item())
optimizer.step()
bar.set_description("epoch:{} idx:{} loss:{:.6f}".format(epoch,idx,np.mean(loss_list))) if idx%10 == 0:
torch.save(model.state_dict(),"./models/model.pkl")
torch.save(optimizer.state_dict(),"./models/optimizer.pkl") if __name__ == '__main__':
for i in range(5):
train(i)
eval()
plt.figure(figsize=(20,8))
plt.plot(range(len(loss_list)),loss_list)

  eval.py

'''
进行模型的训练
'''
import torch import config
from model import ImdbModel
from dataset import get_dataloader
from torch.optim import Adam
from tqdm import tqdm
import torch.nn.functional as F
import numpy as np
import matplotlib.pyplot as plt def eval():
model = ImdbModel().to(config.device)
model.load_state_dict(torch.load("./models/model.pkl"))
model.eval()
loss_list = []
acc_list = []
test_dataloader = get_dataloader(train=False)
with torch.no_grad():
for input,target in test_dataloader:
input = input.to(config.device)
target = target.to(config.device)
output = model(input)
loss = F.nll_loss(output,target)
loss_list.append(loss.item())
#准确率
pred= output.max(dim = -1)[-1]
acc_list.append(pred.eq(target).cpu().float().mean())
print("loss:{:.6f},acc:{}".format(np.mean(loss_list),np.mean(acc_list))) if __name__ == '__main__':
eval()

  

pytorch LSTM情感分类全部代码的更多相关文章

  1. pytorch 文本情感分类和命名实体识别NER中LSTM输出的区别

    文本情感分类: 文本情感分类采用LSTM的最后一层输出 比如双层的LSTM,使用正向的最后一层和反向的最后一层进行拼接 def forward(self,input): ''' :param inpu ...

  2. NLP(十九) 双向LSTM情感分类模型

    使用IMDB情绪数据来比较CNN和RNN两种方法,预处理与上节相同 from __future__ import print_function import numpy as np import pa ...

  3. PaddlePaddle︱开发文档中学习情感分类(CNN、LSTM、双向LSTM)、语义角色标注

    PaddlePaddle出教程啦,教程一部分写的很详细,值得学习. 一期涉及新手入门.识别数字.图像分类.词向量.情感分析.语义角色标注.机器翻译.个性化推荐. 二期会有更多的图像内容. 随便,帮国产 ...

  4. 使用BERT进行情感分类预测及代码实例

    文章目录 0. BERT介绍 1. BERT配置 1.1. clone BERT 代码 1.2. 数据处理 1.2.1预训练模型 1.2.2数据集 训练集 测试集 开发集 2. 修改代码 2.1 加入 ...

  5. 基于Bert的文本情感分类

    详细代码已上传到github: click me Abstract:    Sentiment classification is the process of analyzing and reaso ...

  6. kaggle——Bag of Words Meets Bags of Popcorn(IMDB电影评论情感分类实践)

    kaggle链接:https://www.kaggle.com/c/word2vec-nlp-tutorial/overview 简介:给出 50,000 IMDB movie reviews,进行0 ...

  7. 文本情感分类:分词 OR 不分词(3)

    为什么要用深度学习模型?除了它更高精度等原因之外,还有一个重要原因,那就是它是目前唯一的能够实现“端到端”的模型.所谓“端到端”,就是能够直接将原始数据和标签输入,然后让模型自己完成一切过程——包括特 ...

  8. 使用bert进行情感分类

    2018年google推出了bert模型,这个模型的性能要远超于以前所使用的模型,总的来说就是很牛.但是训练bert模型是异常昂贵的,对于一般人来说并不需要自己单独训练bert,只需要加载预训练模型, ...

  9. NLP文本情感分类传统模型+深度学习(demo)

    文本情感分类: 文本情感分类(一):传统模型 摘自:http://spaces.ac.cn/index.php/archives/3360/ 测试句子:工信处女干事每月经过下属科室都要亲口交代24口交 ...

随机推荐

  1. Python学习笔记:set集合类型所有方法汇总

    ################################################## 集合的作用是:# 1.获得两个集合之间某种关系的集合(比如求两个集合的交集)# 2.计算集合之间的 ...

  2. [vijos1304]回文数<模拟>

    题目链接:https://vijos.org/p/1304 好久没写博客了,最近一直打不出题,感觉自己是废了,今天做了一道模拟水题,但还是半天没过,后来才发现是忘记考虐10以上的进制是带有字母的,然后 ...

  3. 树形dp技巧,多叉树转二叉树

    今天复习树形dp时发现一道比较古老的题,叫选课,是树形dp的一道基础题,也是多叉树转二叉树应用的模版题 多叉树转二叉树的应用非常广泛,因为如果一个节点的儿子太多,一个一个存下来不方便去查询,并且会增加 ...

  4. cut-trailing-bytes:二进制尾部去0小工具

    背景 之前的文章 二进制文件处理之尾部补0和尾部去0 中介绍了一种使用 sed 去除二进制文件尾部的 NULL(十六进制0x00)字节的方法. 最近发现这种方法有局限性,无法处理较大的文件.因为 se ...

  5. 20175314 实验五 Java网络编程

    20175314 实验五 Java网络编程 一.实验报告封面 课程:Java程序设计 班级:1753班 姓名:薛勐 学号:20175314 指导教师:娄嘉鹏 实验日期:2018年5月31日 实验时间: ...

  6. 用人话告诉小白:什么是项目管理(例如Maven),什么是调试工具(即debugger),什么是编译(即compile)

    项目管理 以java程序的项目管理软件Maven为例,java程序根据代码的不同需要不同的jar文件才能编译运行. 人物:两个程序员A和B 物品:一个java程序G,许多jar文件 场景:当A在自己电 ...

  7. 前端面试题解密:经典算法之冒泡算法(ES6版)及优化

    前言 随着前端的飞速发展,前端业务开发给前端工程师提出了更高的要求,因而算法题也越来越高频次的出现在前端面试中.有很多的小伙伴找胡哥苦诉,在前端实际开发中(除了涉及游戏开发方面),算法使用有很多吗?大 ...

  8. java day04记录

    本文主要记录arr数组用法.count计算.arr倒排序技巧案例 package day4homework; import java.util.Scanner; /* 从键盘上输入10个整数,合法值位 ...

  9. 刨根问底系列(3)——关于socket api的原子操作性和线程安全性的探究和实验测试(多线程同时send,write)

    多个线程对同一socket同时进行send操作的结果 1. 概览 1.1 起因 自己写的项目里,为了保证连接不中断,我起一个线程专门发送心跳包保持连接,那这个线程在send发送数据时,可能会与主线程中 ...

  10. Spring温习(1)--最基础的示例

    Spring温习(1)--最基础的示例 博客分类: 框架-Spring专栏 SpringXMLBeanWebDAO 从现在开始,我将从Spring为起点,逐步复习几大框架各方面的知识,以便今后查看使用 ...