题目传送门

解题思路:

第一问要求最长公共子序列,直接套模板就好了.

第二问要求数量,ans[i][j]表示第一个字符串前i个字符,第二个字符串前j个字符的最长公共子序列的数量

如果f[i][j]是由f[i-1][j]转移过来的,那么ans[i][j] += ans[i-1][j].

如果是从f[i][j-1]或f[i-1][j-1]转移过来的,同上(数组下标变化).

如果f[i][j] == f[i-1][j-1],那么说明f[i-1][j]和f[i][j-1]是从f[i-1][ij-1]转移过来的,那么ans[i][j]就把ans[i-1][j-1]加了两遍,要减去一遍.

还有就是题目中两个字符串的长度都不超过5000,如果直接暴力,会MLE.

那么,这个时候,我们的滚动数组就派上用场了.

最后说明一点,ans的初始值怎么附: 我是设第一次的i为0,那么ans[0][0] = 1,因为长度为1的A和长度为0的B的最长公共子序列有1个.

ans[1][所有] = 1;因为长度为0的A和任意长度的B最长公共子序列的个数都是1.

AC代码:

 #include<iostream>
#include<cstdio> using namespace std; const int mod = ;
string l,l1;
int f[][],ans[][],m; inline int max(int a,int b) {
if(a >= b) return a;
return b;
} int main() {
cin >> l >> l1;
for(int i = ;i <= l1.length() - ; i++)
ans[][i] = ;
ans[][] = ;
for(int i = ;i <= l.length() - ; i++) {
for(int j = ;j <= l1.length() - ; j++) {
f[m][j] = max(f[m][j-],max(f[m^][j],f[m^][j-] + (l[i-] == l1[j-])));
ans[m][j] = ;
if(f[m][j] == f[m^][j]) ans[m][j] += ans[m^][j];
if(f[m][j] == f[m][j-]) ans[m][j] += ans[m][j-];
if(f[m][j] == f[m^][j-] + && l[i-] == l1[j-]) ans[m][j] += ans[m^][j-];
if(f[m][j] == f[m^][j-]) ans[m][j] -= ans[m^][j-];
ans[m][j] = ans[m][j] % mod;
}
m = m ^ ;
}
printf("%d\n%d",f[m^][l1.length()-],ans[m^][l1.length()-]);
return ;
}

洛谷 P2516 [HAOI2010]最长公共子序列的更多相关文章

  1. 洛谷P2516 [HAOI2010]最长公共子序列(LCS,最短路)

    洛谷题目传送门 一进来就看到一个多月前秒了此题的ysn和YCB%%% 最长公共子序列的\(O(n^2)\)的求解,Dalao们想必都很熟悉了吧!不过蒟蒻突然发现,用网格图貌似可以很轻松地理解这个东东? ...

  2. 洛谷P2516 [HAOI2010]最长公共子序列

    题目描述 字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列.令给定的字符序列X="x0,x1,-,xm-1",序列Y=& ...

  3. 洛谷1439:最长公共子序列(nlogn做法)

    洛谷1439:最长公共子序列(nlogn做法) 题目描述: 给定两个序列求最长公共子序列. 这两个序列一定是\(1\)~\(n\)的全排列. 数据范围: \(1\leq n\leq 10^5\) 思路 ...

  4. 2021.12.10 P2516 [HAOI2010]最长公共子序列(动态规划+滚动数组)

    2021.12.10 P2516 [HAOI2010]最长公共子序列(动态规划+滚动数组) https://www.luogu.com.cn/problem/P2516 题意: 给定字符串 \(S\) ...

  5. P2516 [HAOI2010]最长公共子序列 题解(LCS)

    题目链接 最长公共子序列 解题思路 第一思路: 1.用\(length[i][j]\)表示\(a\)串的前\(i\)个字符与\(b\)串的前\(j\)个字符重叠的最长子串长度 2.用\(num[i][ ...

  6. luogu P2516 [HAOI2010]最长公共子序列

    传送门 首先那个\(O(n^2)\)的dp都会吧,不会自己找博客或者问别人,或是去做模板题(误) 对以下内容不理解的,强势推荐flash的博客 我们除了原来记录最长上升子序列的\(f_{i,j}\), ...

  7. Luogu P2516 [HAOI2010]最长公共子序列 DP

    首先$LIS$显然:$f[i][j]=max(f[i][j-1],f[i-1][j],(a[i]==b[j])*f[i-1][j-1])$ 考虑如何转移数量: 首先,不管$a[i]$是否等于$b[j] ...

  8. P2516 [HAOI2010]最长公共子序列

    传送门 看到数据范围,显然 $n^2$ 的 $dp$... 设 $f[i][j]$ 表示 $A$ 串考虑了前 $i$ 位,$B$ 串考虑了前 $j$ 位,最优情况下的方案数 但是好像没法判断转移来的是 ...

  9. [BZOJ2423][HAOI2010]最长公共子序列

    [BZOJ2423][HAOI2010]最长公共子序列 试题描述 字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列.令给定的字符序列X=“x ...

随机推荐

  1. MySQL复制(一)--复制概述

    MySQL复制(replication)文档集合:1.复制概述2.基于二进制日志文件位置(binlog)配置复制3.基于全局事物标识符(GTID)配置复制4.多源复制5.级联复制6.半同步复制7.延迟 ...

  2. Django创建完全独立的APP

    我们之前已经完成了项目的结构搭建,但是,在Django当中,我们强调的一个重要概念是app,比如Django自带的admin就是一个成功的app典范,那么我们应该如果整理自己的项目结构,才能让我们的a ...

  3. 61 C项目------家庭收支软件

    1,目标: ①模拟实现一个基于文本界面的<家庭收支软件> ②涉及知识点 局部变量和基本数据类型 循环语句 分支语句 简单的屏幕输出格式控制 2,需求说明: ①模拟实现基于文本界面的< ...

  4. 第二单元总结:基于synchronize锁的简单多线程设计

    单元统一的多线程设计策略 类的设计 电梯 每部电梯为一个线程. 电梯从调度器接收原子指令,知晓自己的状态(内部的人/服务的人.运行方向.所在楼层) 原子指令包括且仅包括: 向上走一层 / 向下走一层 ...

  5. Python测试进阶——(1)安装Python测试相关模块

    安装python 安装pip yum -y install epel-release yum -y install python-pip 安装psutil 参考:https://www.cnblogs ...

  6. Windows 与 Linux 、esxi下面查看内存容量和数量

    1. Windows 查看内存信息: > wmic MEMORYCHIP get BankLabel,DeviceLocator,Capacity,Speed 2. Linux 查看内存信息: ...

  7. 2013蓝桥杯预赛C/C++本科B组

    题目标题: 高斯日记 大数学家高斯有个好习惯:无论如何都要记日记. 他的日记有个与众不同的地方,他从不注明年月日,而是用一个整数代替,比如:4210 后来人们知道,那个整数就是日期,它表示那一天是高斯 ...

  8. JVM:Java 类的加载机制

    虚拟机把描述类的数据从 Class 文件加载到内存,并对数据进行校验,转换,解析和初始化,最终形成可以被虚拟机直接使用的 Java 类型,这就是虚拟机的类加载机制. 类的生命周期 类从被加载到虚拟机内 ...

  9. 026、Java中改变运算优先级

    01.代码如下: package TIANPAN; /** * 此处为文档注释 * * @author 田攀 微信382477247 */ public class TestDemo { public ...

  10. NO5 grep-head-tail命令

    ·*****grep:#过滤需要的内容(linux三剑客).                   -v:排除内容.eg:grep -v oldboy test.txt ·head: #头,头部.读取文 ...