这题美好体验就是卡常

Description

link

\[\sum^{n}_ {i=1} \sum^m_{j=1} [gcd(i,j)\in prime]
\]

其中:\(1\leq n,m \leq 10^7\),多组询问

Solution

对于这种与\(gcd\)相关的反演题,有一个好的套路

设\(f(d)=[gcd(i,j)=d]\),\(F(n)\)为\(gcd(i,j)=d\)和\(d\)的倍数的个数,即:

\[f(d)=[gcd(i,j)=d]
\]

\[F(n)=\sum_{d|n} f(d)= \lfloor \frac{N}{n} \rfloor \lfloor \frac{M}{m} \rfloor
\]

\[f(n)=\sum_{n|d} \mu(\lfloor \frac{d}{n} \rfloor)F(d)
\]

由着这个套路,我们开始化简这个式子

\[\sum_{p \in prime} \sum_{i=1}^n \sum_{j=1}^m [gcd(i,j)==p]
\]

将\(f(p)\)带入:

\[\sum_{p \in prime}f(p)
\]

把\(f(x)\)换成\(F(x)\)

\[\sum_{p \in prime}\sum_{p|d} \mu(\lfloor \frac{d}{p} \rfloor)F(d)
\]

我们枚举\(\lfloor \frac{d}{p} \rfloor\)

\[\sum_{p \in prime} \sum_{d=1}^{min(\lfloor \frac{n}{p} \rfloor,\lfloor \frac{m}{p} \rfloor} \mu(d)F(dp)
\]

再把\(F(dp)\)换成最终式:

\[\sum_{p \in prime} \sum_{d=1}^{min(\lfloor \frac{n}{p} \rfloor,\lfloor \frac{m}{p} \rfloor)} \mu(d)\lfloor \frac{N}{n} \rfloor \lfloor \frac{M}{m} \rfloor
\]

令\(T=dp\),则有:

\[\sum^{min(n,m)}_ {T=1} \sum_{t|T,t\in prime} \mu(\lfloor \frac{T}{t} \rfloor)\lfloor \frac{n}{T} \rfloor\lfloor \frac{m}{T} \rfloor
\]

\[\sum^{min(n,m)}_ {T=1} \lfloor \frac{n}{T} \rfloor\lfloor \frac{m}{T} \rfloor(\sum_{t|T} \mu(\lfloor \frac{T}{t} \rfloor))
\]

推到这里,我们就都可以做了

\(\mu(\space)\)可以线性筛,其他的可以整除分块

CODE

#include<bits/stdc++.h>
#define reg register
using namespace std;
namespace yspm{
inline int read()
{
int res=0,f=1; char k;
while(!isdigit(k=getchar())) if(k=='-') f=-1;
while(isdigit(k)) res=res*10+k-'0',k=getchar();
return res*f;
}
const int N=10000010;
bool vis[N]; int pri[N],mu[N],g[N],cnt;
#define ll long long
ll sum[N];
inline void prework()
{
mu[1]=1;
for(reg int i=2;i<N;++i)
{
if(!vis[i]){mu[i]=-1;pri[++cnt]=i;}
for(reg int j=1;j<=cnt&&pri[j]*i<N;++j)
{
vis[i*pri[j]]=1;
if(i%pri[j]==0) break;
else mu[pri[j]*i]-=mu[i];
}
}
for(reg int j=1;j<=cnt;++j)
{
for(reg int i=1;i*pri[j]<N;++i) g[i*pri[j]]+=mu[i];
}
for(reg int i=1;i<N;++i) sum[i]=sum[i-1]+(ll)g[i];
return ;
}
inline void work()
{
int n=read(),m=read(); if(n>m) swap(n,m);
ll ans=0;
for(reg int l=1,r;l<=n;l=r+1)
{
r=min(n/(n/l),m/(m/l));
ans+=1ll*(n/l)*(m/l)*(sum[r]-sum[l-1]);
}printf("%lld\n",ans);
return ;
}
signed main()
{
prework(); int T=read(); while(T--) work();
return 0;
}
}
signed main(){return yspm::main();}

不禁感叹一句,能让 \(yspm\) 这种信奉 \(define \space int \space long \space long\) 的人都不全用 $ long \space long $ 的得是什么卡常\(sb\)题呀!!!

LGOJ2257 YY的GCD的更多相关文章

  1. BZOJ 2820: YY的GCD [莫比乌斯反演]【学习笔记】

    2820: YY的GCD Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1624  Solved: 853[Submit][Status][Discu ...

  2. [BZOJ2820]YY的GCD

    [BZOJ2820]YY的GCD 试题描述 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少 ...

  3. bzoj 2820 YY的GCD 莫比乌斯反演

    题目大意: 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对 这里就抄一下别人的推断过程了 后面这个g(x) 算的方法就是在线性 ...

  4. 【BZOJ】【2820】YY的GCD

    莫比乌斯反演 PoPoQQQ讲义第二题. 暴力枚举每个质数,然后去更新它的倍数即可,那个g[x]看不懂就算了…… 为什么去掉了一个memset就不T了→_→…… /****************** ...

  5. 【莫比乌斯反演】关于Mobius反演与gcd的一些关系与问题简化(bzoj 2301 Problem b&&bzoj 2820 YY的GCD&&BZOJ 3529 数表)

    首先我们来看一道题  BZOJ 2301 Problem b Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd( ...

  6. 【BZOJ 2820】 YY的GCD (莫比乌斯+分块)

    YY的GCD   Description 神犇YY虐完数论后给傻×kAc出了一题 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少 ...

  7. 【BZOJ2820】YY的GCD(莫比乌斯反演)

    [BZOJ2820]YY的GCD(莫比乌斯反演) 题面 讨厌权限题!!!提供洛谷题面 题解 单次询问\(O(n)\)是做过的一模一样的题目 但是现在很显然不行了, 于是继续推 \[ans=\sum_{ ...

  8. YY的GCD

    YY的GCD 给出T个询问,询问\(\sum_{i=1}^N\sum_{j=1}^M(gcd(i,j)\in prime)\),T = 10000,N, M <= 10000000. 解 显然质 ...

  9. 洛谷【P2257】YY的GCD

    YY的GCD 原题链接 这应该是我做的第一道莫比乌斯反演的题目. 题目描述 神犇YY虐完数论后给傻×kAc出了一题 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x ...

随机推荐

  1. Servlet详细教程

    Servlet简介 servlet是Server Applet的简称,翻译过来就是服务程序.好吧,这么说你可能还是不太懂,简单的讲,这个servlet是运行在服务器上的一个小程序,用来处理服务器请求的 ...

  2. jvm调优原则

    合理规划jvm性能调优 JVM性能调优涉及到方方面面的取舍,往往是牵一发而动全身,需要全盘考虑各方面的影响.但也有一些基础的理论和原则,理解这些理论并遵循这些原则会让你的性能调优任务将会更加轻松.为了 ...

  3. 数的划分(DFS、DP)

    https://www.luogu.com.cn/problem/P1025 题目描述 将整数n分成k份,且每份不能为空,任意两个方案不相同(不考虑顺序). 例如:n=7,k=3,下面三种分法被认为是 ...

  4. ansible-playbook权限提升多种方式

    ansible-playbook 可以方便快速的批量执行部署和运维任务,对于不同的场景和服务器,需要使用不同的权限提升方式. 最佳实现:为了提高playbook的兼容性,跟功能没有直接关系的权限提升脚 ...

  5. Java学习十三

    学习内容: 1.Java反射 2.jdbc入门 1.反射的概述 Java的反射机制:动态获取信息以及动态调用对象方法 Java的反射机制的作用:用来编写一些通用性较高的代码或者框架的时候使用 原理:j ...

  6. java笔记——手写+键入

    Frame.setDefaultCloseOpreation() Default:默认的 设置默认关闭操作 (0:什么都不干: 1:隐藏窗口: 2:关闭窗口但继续运行程序: 3:关闭窗口关闭程序:) ...

  7. 记录一次URL中有特殊字符怎么处理?

    你out了,赶紧换 RestTemplate 吧! 进入正题,直接实战!!! import java.util.HashMap; import java.util.Map; import org.ju ...

  8. JS用例

    showBtn :class="{getInput:showBtn}"v-if="showBtn" showBtn: true, this.showBtn = ...

  9. linux的vi编辑器中如何查找内容(关键字)

    按下”/“键,这时在状态栏(也就是屏幕左下脚)就出现了 “/” 然后输入你要查找的关键字敲回车就可以了. 找到相关文字以后: (1)按下小写n,向下查找 (2)按下大写N,向上查找

  10. 2019牛客网暑假多校训练第四场 K —number

    链接:https://ac.nowcoder.com/acm/contest/884/K来源:牛客网 题目描述 300iq loves numbers who are multiple of 300. ...