In this problem, we will define a graph called star graph, and the question is to find the minimum distance between two given nodes in the star graph.

Given an integer nnn, an n−dimensionaln-dimensionaln−dimensional star graph, also referred to as SnS_{n}S​n​​, is an undirected graph consisting of n!n!n! nodes (or vertices) and ((n−1) ∗ n!)/2((n-1)\ *\ n!)/2((n−1) ∗ n!)/2 edges. Each node is uniquely assigned a label x1 x2 ... xnx_{1}\ x_{2}\ ...\ x_{n}x​1​​ x​2​​ ... x​n​​ which is any permutation of the n digits 1,2,3,...,n{1, 2, 3, ..., n}1,2,3,...,n. For instance, an S4S_{4}S​4​​ has the following 24 nodes 1234,1243,1324,1342,1423,1432,2134,2143,2314,2341,2413,2431,3124,3142,3214,3241,3412,3421,4123,4132,4213,4231,4312,4321{1234, 1243, 1324, 1342, 1423, 1432, 2134, 2143, 2314, 2341, 2413, 2431, 3124, 3142, 3214, 3241, 3412, 3421, 4123, 4132, 4213, 4231, 4312, 4321}1234,1243,1324,1342,1423,1432,2134,2143,2314,2341,2413,2431,3124,3142,3214,3241,3412,3421,4123,4132,4213,4231,4312,4321. For each node with label x1 x2x3 x4 ... xnx_{1}\ x_{2} x_{3}\ x_{4}\ ...\ x_{n}x​1​​ x​2​​x​3​​ x​4​​ ... x​n​​, it has n−1n-1n−1 edges connecting to nodes x2 x1 x3 x4 ... xnx_{2}\ x_{1}\ x_{3}\ x_{4}\ ...\ x_{n}x​2​​ x​1​​ x​3​​ x​4​​ ... x​n​​, x3 x2 x1 x4 ... xnx_{3}\ x_{2}\ x_{1}\ x_{4}\ ...\ x_{n}x​3​​ x​2​​ x​1​​ x​4​​ ... x​n​​, x4 x2 x3 x1 ... xnx_{4}\ x_{2}\ x_{3}\ x_{1}\ ...\ x_{n}x​4​​ x​2​​ x​3​​ x​1​​ ... x​n​​, ..., and xn x2 x3 x4 ... x1x_{n}\ x_{2}\ x_{3}\ x_{4}\ ...\ x_{1}x​n​​ x​2​​ x​3​​ x​4​​ ... x​1​​. That is, the n−1n-1n−1 adjacent nodes are obtained by swapping the first symbol and the d−thd-thd−th symbol of x1 x2 x3 x4 ... xnx_{1}\ x_{2}\ x_{3}\ x_{4}\ ...\ x_{n}x​1​​ x​2​​ x​3​​ x​4​​ ... x​n​​, for d=2,...,nd = 2, ..., nd=2,...,n. For instance, in S4S_{4}S​4​​, node 123412341234 has 333 edges connecting to nodes 213421342134, 321432143214, and 423142314231. The following figure shows how S4S_{4}S​4​​ looks (note that the symbols aaa, bbb, ccc, and ddd are not nodes; we only use them to show the connectivity between nodes; this is for the clarity of the figure).

In this problem, you are given the following inputs:

  • nnn: the dimension of the star graph. We assume that nnn ranges from 444 to 999.
  • Two nodes x1x_{1}x​1​​ x2x_{2}x​2​​ x3x_{3}x​3​​ ... xnx_{n}x​n​​ and y1y_{1}y​1​​ y2y_{2}y​2​​ y3 ... yny_{3}\ ...\ y_{n}y​3​​ ... y​n​​ in SnS_{n}S​n​​.

You have to calculate the distance between these two nodes (which is an integer).

Input Format

nnn (dimension of the star graph)

A list of 555 pairs of nodes.

Output Format

A list of 555 values, each representing the distance of a pair of nodes.

样例输入

4
1234 4231
1234 3124
2341 1324
3214 4213
3214 2143

样例输出

1
2
2
1
3 vis标记一次就够了
#include<cstdio>
#include<queue>
#include<map>
#include<string>
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
string s,t,v;
int n;
struct node
{
string s;
int step;
node(string str,int n)
{
s=str,step=n;
}
node()
{
s="";
step=;
}
};
int bfs()
{
queue<node>Q;
map<string,bool>vis;
Q.push(node(s,));
vis[s]=;
while(!Q.empty())
{
node u=Q.front();
Q.pop();
vis[u.s]=;
if(u.s==t) return u.step;
for(int i=; i<n; ++i)
{
v=u.s;
swap(v[],v[i]);
if(!vis[v])
{
node tc=node(v,u.step+);
vis[v]=;
Q.push(tc);
}
}
}
}
int main()
{
scanf("%d",&n);
for(int i=; i<=; ++i)
{
cin>>s>>t;
if(s==t)
{
puts("");
continue;
}
printf("%d\n",bfs());
}
}
#include<cstdio>
#include<queue>
#include<map>
#include<string>
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
string s,t,u,v;
int n;
int bfs()
{
map<string,int>mp;
queue<string>Q; //不能用queue<char*>;
map<string,bool>vis;
Q.push(s);
mp[s]=;
vis[s]=;
while(!Q.empty())
{
u=Q.front();
Q.pop();
if(u==t) return mp[t];
for(int i=; i<n; ++i)
{
v=u;
swap(v[],v[i]);
mp[v]=mp[u]+;
if(!vis[v])
{
mp[v]=mp[u]+;
vis[v]=;
Q.push(v);
}
}
}
}
int main()
{
scanf("%d",&n);
for(int i=; i<=; ++i)
{
cin>>s>>t;
if(s==t)
{
puts("");
continue;
}
printf("%d\n",bfs());
}
}

2017-ACM南宁网络赛的更多相关文章

  1. 2017 icpc 南宁网络赛

    2000年台湾大专题...英语阅读输入输出专场..我只能说很强势.. M. Frequent Subsets Problem The frequent subset problem is define ...

  2. hdu6212[区间dp] 2017青岛ACM-ICPC网络赛

    原题: BZOJ1032 (原题数据有问题) /*hdu6212[区间dp] 2017青岛ACM-ICPC网络赛*/ #include <bits/stdc++.h> using name ...

  3. 2017 icpc 沈阳网络赛

    cable cable cable Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  4. 2017南宁网络赛 Problem J Minimum Distance in a Star Graph ( 模拟 )

    题意 : 乱七八糟说了一大堆,实际上就是问你从一个序列到另个序列最少经过多少步的变化,每一次变化只能取序列的任意一个元素去和首元素互换 分析 : 由于只能和第一个元素去互换这种操作,所以没啥最优的特别 ...

  5. 2013 acm 长沙网络赛 G题 素数+枚举 Goldbach

    题目 http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3856 先预处理求出两个素数的和与积,然后枚举n-prime和n/pr ...

  6. 2017青岛赛区网络赛 Smallest Minimum Cut 求最小割的最小割边数

    先最大流跑一遍 在残存网络上把满流边容量+1 非满流边容量设为无穷大 在进行一次最大流即可 (这里的边都不包括建图时用于反悔的反向边) #include<cstdio> #include& ...

  7. HDU 5901 Count primes (2016 acm 沈阳网络赛)

    原题地址:http://acm.hdu.edu.cn/showproblem.php?pid=5901 题意:输入n,输出n以内质数个数 模板题,模板我看不懂,只是存代码用. 官方题解链接:https ...

  8. hdu 5881 Tea (2016 acm 青岛网络赛)

    原题地址:http://acm.hdu.edu.cn/showproblem.php?pid=5881 Tea Time Limit: 3000/1000 MS (Java/Others)    Me ...

  9. 2015年ACM长春网络赛(准备做掉7道:已经更新到6道)

    总结汇总:模板 int getmax_min(char s[]) {//字符串的最大表示法:返回最小数组下标 , j = , k = ; while(i < len && j & ...

  10. 2015年ACM沈阳网络赛(准备做掉4道:)

    Traversal Best Solver Minimum Cut Dividing This Product Excited Database Fang Fang Matches Puzzle Ga ...

随机推荐

  1. 【JAVA基础】11 Scanner类

    1. Scanner的概述 一个可以使用正则表达式来解析基本类型和字符串的简单文本扫描器. Scanner 使用分隔符模式将其输入分解为标记,默认情况下该分隔符模式与空白匹配.然后可以使用不同的 ne ...

  2. Vue.js中scoped引发的CSS作用域探讨

    前言 在Vue.js的组件化开发中,常常会对某个组件的style标签加上scoped属性,如<style lang='less' scoped>,这样做的目的在于使这个组件的样式不能轻易在 ...

  3. RF(数据库测试)

    1.下载 DatabaseLibrary 库 pip install robotframework-databaselibrary 2.下载 pymysql 库(作为中间件) pip install ...

  4. jmeter4.0,启动jmeter.bat闪退问题

    问题描述: 电脑重装win10系统,配置好了java环境后,解压jmeter的zip包,然后按照网上的教程配置环境变量,然后兴冲冲启动jmeter.bat,结果,闪退,甚至连个报错信息都没有... 然 ...

  5. 一文带你学会java的jvm精华知识点

    前言 本文分为20多个问题,通过问题的方式,来逐渐理解jvm,由浅及深.希望帮助到大家. 1. Java类实例化时,JVM执行顺序? 正确的顺序如下: 1父类静态代码块 2父类静态变量 3子类静态代码 ...

  6. Android | 带你零代码实现安卓扫码功能

    目录 小序 背景介绍 前期准备 开始搬运 结语 小序   这是一篇纯新手教学,本人之前没有任何安卓开发经验(尴尬),本文也不涉及任何代码就可以使用一个扫码demo,华为scankit真是新手的福音-- ...

  7. thinkphp历史漏洞

    https://github.com/pochubs/pochubs/blob/master/ThinkPHP.md tp 历史漏洞 路由控制類RCE/think/App.php if (!preg_ ...

  8. Java——多线程之方法详解

    Java多线程系列文章是Java多线程的详解介绍,对多线程还不熟悉的同学可以先去看一下我的这篇博客Java基础系列3:多线程超详细总结,这篇博客从宏观层面介绍了多线程的整体概况,接下来的几篇文章是对多 ...

  9. Three Blocks Palindrome (easy version)[暴力-预处理]

    给定一个数组,找出最长的子序列,满足 a,a,..a,b,b,..b,a,a,..a 前面的a和后面的a都要是x个,中间的b是y个. 其中,x>=0且y>=0. \(\color{Red} ...

  10. linux的用户管理、组管理

    用户管理:centos系统是一个多用户系统 用户分为三类: 超级用户(root) 用户id为 0 伪用户 用户id为1-499,虽然存在,但是不能用户登录 普通用户 用户id为500-60000 用户 ...