题目大意:

  有n*m的方格,中间的数要么是1,要么是0,要求任意2*2的方格中的数异或和为1。已知一部分格子中的数,求合法的填数的方案数。

思路:

  由题意得:a[i][j]^a[i][j+1]^a[i+1][j]^a[i+1][j+1]=1,令这个式子为S(i,j),那么对于某一格(i,j),我们把S(1,1)...S(i,j)异或起来,则可得当i,j均为偶数时a[1][1]^a[i][1]^a[1][j]^a[i][j]=1(于是为了方便先预处理一下),否则a[1][1]^a[i][1]^a[1][j]^a[i][j]=0。可以枚举a[1][1]的值再由a[i][j]得到a[i][1]与a[1][j]的相同情况(可默认所有数均为0),于是相同就用并查集并起来。若有(n+1)个联通块则有$2^n$种方案(因为与a[1][1]相同的已经确定了)。

代码:

 #include<cstdio>
#include<iostream>
using namespace std;
const int M=,mo=;
int n,m,i,k,sum,u,v,t,ans,x[M],y[M],z[M],g[M],fa[M]; int read()
{
int x=;
char ch=getchar();
while (ch<'' || ch>'') ch=getchar();
while (ch>='' && ch<='') x=(x<<)+(x<<)+ch-,ch=getchar();
return x;
} int getfa(int x)
{
if (x==fa[x]) return x;
int t=getfa(fa[x]); g[x]^=g[fa[x]];
return fa[x]=t;
} int wk()
{
for (i=;i<=n+m;i++) fa[i]=i,g[i]=;
for (fa[n+]=i=;i<=k;i++)
{
u=getfa(x[i]),v=getfa(y[i]+n),t=g[x[i]]^g[y[i]+n]^z[i];
if (u!=v) fa[u]=v,g[u]=t;
else if (t) return ;
}
for (sum=-,i=;i<=n+m;i++)
if (getfa(i)==i)
if (sum==-) sum=;
else if ((sum<<=)>=mo) sum-=mo;
return sum;
} int main()
{
bool flag[]={,};
n=read(),m=read(),k=read();
for (i=;i<=k;i++)
{
x[i]=read(),y[i]=read(),z[i]=read();
if (x[i]+y[i]==) { flag[z[i]]=,i--,k--; continue; }
if (!((x[i]|y[i])&)) z[i]^=;
}
if (flag[]) ans=wk();
if (flag[])
{
for (i=;i<=k;i++)
if (x[i]> && y[i]>) z[i]^=;
if ((ans+=wk())>=mo) ans-=mo;
}
printf("%d\n",ans);
return ;
}

BZOJ 2303: [Apio2011]方格染色 题解的更多相关文章

  1. bzoj 2303: [Apio2011]方格染色

    传送门 Description Sam和他的妹妹Sara有一个包含n × m个方格的表格.她们想要将其的每个方格都染成红色或蓝色.出于个人喜好,他们想要表格中每个2 × 2的方形区域都包含奇数个(1 ...

  2. BZOJ 2303: [Apio2011]方格染色 [并查集 数学!]

    题意: $n*m:n,m \le 10^6$的网格,每个$2 \times 2$的方格必须有1个或3个涂成红色,其余涂成蓝色 有一些方格已经有颜色 求方案数 太神了!!!花我三节课 首先想了一下只有两 ...

  3. bzoj 2303: [Apio2011]方格染色【并查集】

    画图可知,每一行的状态转移到下一行只有两种:奇数列不变,偶数列^1:偶数列不变,奇数列^1 所以同一行相邻的变革染色格子要放到同一个并查集里,表示这个联通块里的列是联动的 最后统计下联通块数(不包括第 ...

  4. [BZOJ2303][Apio2011]方格染色

    [BZOJ2303][Apio2011]方格染色 试题描述 Sam和他的妹妹Sara有一个包含n × m个方格的 表格.她们想要将其的每个方格都染成红色或蓝色. 出于个人喜好,他们想要表格中每个2 × ...

  5. BZOJ_2303_[Apio2011]方格染色 _并查集

    BZOJ_2303_[Apio2011]方格染色 _并查集 Description Sam和他的妹妹Sara有一个包含n × m个方格的 表格.她们想要将其的每个方格都染成红色或蓝色. 出于个人喜好, ...

  6. BZOJ 4033: [HAOI2015]树上染色题解

    BZOJ 4033: [HAOI2015]树上染色题解(树形dp) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/1327400 原题地址: BZOJ 403 ...

  7. 【题解】P3631 [APIO2011]方格染色

    很有意思的一道题,所以单独拿出来了. 完整分享看 这里 题目链接 luogu 题意 有一个包含 \(n \times m\) 个方格的表格.要将其中的每个方格都染成红色或蓝色.表格中每个 \(2 \t ...

  8. BZOJ2303: [Apio2011]方格染色 【并查集】

    Description Sam和他的妹妹Sara有一个包含n × m个方格的表格.她们想要将其的每个方格都染成红色或蓝色.出于个人喜好,他们想要表格中每个2 × 2的方形区域都包含奇数个(1 个或 3 ...

  9. [APIO2011]方格染色

    题解: 挺不错的一道题目 首先4个里面只有1个1或者3个1 那么有一个特性就是4个数xor为1 为什么要用xor呢? 在于xor能把相同的数消去 然后用一般的套路 看看确定哪些值能确定全部 yy一下就 ...

随机推荐

  1. C#中时间的比较

    项目中需求,要求一个线程必须待够一定时间才允许停止,那么就涉及到一个时间的比较与线程的sleep var threadTimeOut= DateTime.Now.AddMinutes(timeOutN ...

  2. Python学习笔记——条件和循环

    1.条件表达式 >>> x = 3 >>> x = 1 if x<3 else 2 >>> x 2 2.for语句用于序列类型 <1& ...

  3. [Unity] 导出Android APK包出错

    确认Android环境是OK的. 检查 StreamingAssets 目录下是否有中文的文件名 检查其它目录的中文文件名. 移除一些插件再试.

  4. 浅谈Android下的Bitmap之大Bitmap加载

    引言 我们常常提到的“Android程序优化”,通常指的是性能和内存的优化,即:更快的响应速度,更低的内存占用.Android程序的性能和内存问题,大部分都和图片紧密相关,而图片的加载在很多情况下很用 ...

  5. 什么时候用@Resource,什么时候用@service

    Spring中什么时候用@Resource,什么时候用@service当你需要定义某个类为一个bean,则在这个类的类名前一行使用@Service("XXX"),就相当于讲这个类定 ...

  6. There are no resources that can be added or removed from the server

    第1步.新建一个“Dynamic Web Project” 第2步.把新建项目里面的.project文件和.settings文件夹复制到导入的那个项目里面. 第3步.把web projiect set ...

  7. ReactiveCocoa源码拆分解析(五)

    (整个关于ReactiveCocoa的代码工程可以在https://github.com/qianhongqiang/QHQReactive下载) 好多天没写东西了,今天继续.主要讲解RAC如何于UI ...

  8. C和指针 第四章 习题

    4.1正数的n的平方根可以通过: ai+1= (ai + n / ai ) / 2 得到,第一个a1是1,结果会越来越精确. #include <stdio.h> int main() { ...

  9. 1.1ASP.NET Web API 2入门

    HTTP 不只是为了生成 web 页面.它也是建立公开服务和数据的 Api 的强大平台.HTTP 是简单的. 灵活的和无处不在.你能想到的几乎任何平台有 HTTP 库,因此,HTTP 服务可以达到范围 ...

  10. jquery.roundabout.js图片叠加3D旋转插件多功能图片翻转切换效果

    http://www.17sucai.com/pins/4880.html DEMO演示地址:http://www.17sucai.com/pins/demoshow/4880