求两条线段交点zz
"求线段交点"是一种非常基础的几何计算, 在很多游戏中都会被使用到.
下面我就现学现卖的把最近才学会的一些"求线段交点"的算法说一说, 希望对大家有所帮助. 
本文讲的内容都很初级, 主要是面向和我一样的初学者, 所以请各位算法帝们轻拍啊 嘎嘎
=============================== 
算法一: 求两条线段所在直线的交点, 再判断交点是否在两条线段上.
求直线交点时 我们可通过直线的一般方程 ax+by+c=0 求得(方程中的abc为系数,不是前面提到的端点,另外也可用点斜式方程和斜截式方程,此处暂且不论). 
然后根据交点的与线段端点的位置关系来判断交点是否在线段上. 公式如下图:

实现代码如下 :
- function segmentsIntr(a, b, c, d){
 - /** 1 解线性方程组, 求线段交点. **/
 - // 如果分母为0 则平行或共线, 不相交
 - var denominator = (b.y - a.y)*(d.x - c.x) - (a.x - b.x)*(c.y - d.y);
 - if (denominator==0) {
 - return false;
 - }
 - // 线段所在直线的交点坐标 (x , y)
 - var x = ( (b.x - a.x) * (d.x - c.x) * (c.y - a.y)
 - + (b.y - a.y) * (d.x - c.x) * a.x
 - - (d.y - c.y) * (b.x - a.x) * c.x ) / denominator ;
 - var y = -( (b.y - a.y) * (d.y - c.y) * (c.x - a.x)
 - + (b.x - a.x) * (d.y - c.y) * a.y
 - - (d.x - c.x) * (b.y - a.y) * c.y ) / denominator;
 - /** 2 判断交点是否在两条线段上 **/
 - if (
 - // 交点在线段1上
 - (x - a.x) * (x - b.x) <= 0 && (y - a.y) * (y - b.y) <= 0
 - // 且交点也在线段2上
 - && (x - c.x) * (x - d.x) <= 0 && (y - c.y) * (y - d.y) <= 0
 - ){
 - // 返回交点p
 - return {
 - x : x,
 - y : y
 - }
 - }
 - //否则不相交
 - return false
 - }
 
算法一思路比较清晰易懂, 但是性能并不高. 因为它在不确定交点是否有效(在线段上)之前, 就先去计算了交点, 耗费了较多的时间. 
如果最后发现交点无效, 那么之前的计算就白折腾了. 而且整个计算的过程也很复杂. 
那么有没有一种思路,可以让我们先判断是否存在有效交点,然后再去计算它呢? 
显然答案是肯定的. 于是就有了后面的一些算法.
=============================== 
算法二: 判断每一条线段的两个端点是否都在另一条线段的两侧, 是则求出两条线段所在直线的交点, 否则不相交.
第一步判断两个点是否在某条线段的两侧, 通常可采用投影法:
求出线段的法线向量, 然后把点投影到法线上, 最后根据投影的位置来判断点和线段的关系. 见下图

点a和点b在线段cd法线上的投影如图所示, 这时候我们还要做一次线段cd在自己法线上的投影(选择点c或点d中的一个即可). 
主要用来做参考. 
图中点a投影和点b投影在点c投影的两侧, 说明线段ab的端点在线段cd的两侧.
同理, 再判断一次cd是否在线段ab两侧即可.
求法线 , 求投影 什么的听起来很复杂的样子, 实际上对于我来说也确实挺复杂,在几个月前我也不会(念书那会儿的几何知识都忘光了 :'( )' 
不过好在学习和实现起来还不算复杂, 皆有公式可循:
求线段ab的法线:
- var nx=b.y - a.y,
 - ny=a.x - b.x;
 - var normalLine = { x: nx, y: ny };
 
注意: 其中 normalLine.x和normalLine.y的几何意义表示法线的方向, 而不是坐标.
求点c在法线上的投影位置:
- var dist= normalLine.x*c.x + normalLine.y*c.y;
 
注意: 这里的"投影位置"是一个标量, 表示的是到法线原点的距离, 而不是投影点的坐标. 
通常知道这个距离就足够了.
当我们把图中 点a投影(distA),点b投影(distB),点c投影(distC) 都求出来之后, 就可以很容易的根据各自的大小判断出相对位置.
distA==distB==distC 时, 两条线段共线 
distA==distB!=distC 时, 两条线段平行 
distA 和 distB 在distC 同侧时, 两条线段不相交. 
distA 和 distB 在distC 异侧时, 两条线段是否相交需要再判断点c点d与线段ab的关系.
前面的那些步骤, 只是实现了"判断线段是否相交", 当结果为true时, 我们还需要进一步求交点. 
求交点的过程后面再说, 先看一下该算法的完整实现 :
- function segmentsIntr(a, b, c, d){
 - //线段ab的法线N1
 - var nx1 = (b.y - a.y), ny1 = (a.x - b.x);
 - //线段cd的法线N2
 - var nx2 = (d.y - c.y), ny2 = (c.x - d.x);
 - //两条法线做叉乘, 如果结果为0, 说明线段ab和线段cd平行或共线,不相交
 - var denominator = nx1*ny2 - ny1*nx2;
 - if (denominator==0) {
 - return false;
 - }
 - //在法线N2上的投影
 - var distC_N2=nx2 * c.x + ny2 * c.y;
 - var distA_N2=nx2 * a.x + ny2 * a.y-distC_N2;
 - var distB_N2=nx2 * b.x + ny2 * b.y-distC_N2;
 - // 点a投影和点b投影在点c投影同侧 (对点在线段上的情况,本例当作不相交处理);
 - if ( distA_N2*distB_N2>=0 ) {
 - return false;
 - }
 - //
 - //判断点c点d 和线段ab的关系, 原理同上
 - //
 - //在法线N1上的投影
 - var distA_N1=nx1 * a.x + ny1 * a.y;
 - var distC_N1=nx1 * c.x + ny1 * c.y-distA_N1;
 - var distD_N1=nx1 * d.x + ny1 * d.y-distA_N1;
 - if ( distC_N1*distD_N1>=0 ) {
 - return false;
 - }
 - //计算交点坐标
 - var fraction= distA_N2 / denominator;
 - var dx= fraction * ny1,
 - dy= -fraction * nx1;
 - return { x: a.x + dx , y: a.y + dy };
 - }
 
最后 求交点坐标的部分 所用的方法看起来有点奇怪, 有种摸不着头脑的感觉. 
其实它和算法一 里面的算法是类似的,只是里面的很多计算项已经被提前计算好了. 
换句话说, 算法二里求交点坐标的部分 其实也是用的直线的线性方程组来做的.
现在来简单粗略 很不科学的对比一下算法一和算法二: 
1 最好情况下, 两种算法的复杂度相同 
2 最坏情况, 算法一和算法二的计算量差不多 
3 但是算法二提供了 更多的"提前结束条件",所以平均情况下,应该算法二更优.
实际测试下来, 实际情况也确实如此.
前面的两种算法基本上是比较常见的可以应付绝大多数情况. 但是事实上还有一种更好的算法. 
这也是我最近才新学会的(我现学现卖了,大家不要介意啊...)
=============================== 
算法三: 判断每一条线段的两个端点是否都在另一条线段的两侧, 是则求出两条线段所在直线的交点, 否则不相交.
(咦? 怎么感觉和算法二一样啊? 不要怀疑 确实一样 ... 囧) 
所谓算法三, 其实只是对算法二的一个改良, 改良的地方主要就是 : 
不通过法线投影来判断点和线段的位置关系, 而是通过点和线段构成的三角形面积来判断.
先来复习下三角形面积公式: 已知三角形三点a(x,y) b(x,y) c(x,y), 三角形面积为:
- var triArea=( (a.x - c.x) * (b.y - c.y) - (a.y - c.y) * (b.x - c.x) ) /2 ;
 
因为 两向量叉乘==两向量构成的平行四边形(以两向量为邻边)的面积 , 所以上面的公式也不难理解. 
而且由于向量是有方向的, 所以面积也是有方向的, 通常我们以逆时针为正, 顺时针为负数.
改良算法关键点就是: 
如果"线段ab和点c构成的三角形面积"与"线段ab和点d构成的三角形面积" 构成的三角形面积的正负符号相异, 
那么点c和点d位于线段ab两侧. 如下图所示:

图中虚线所示的三角形, 缠绕方向(三边的定义顺序)不同, 所以面积的正负符号不同.
下面还是先看代码: 
由于我们只要判断符号即可, 所以前面的三角形面积公式我们就不需要后面的 除以2 了.
- function segmentsIntr(a, b, c, d){
 - // 三角形abc 面积的2倍
 - var area_abc = (a.x - c.x) * (b.y - c.y) - (a.y - c.y) * (b.x - c.x);
 - // 三角形abd 面积的2倍
 - var area_abd = (a.x - d.x) * (b.y - d.y) - (a.y - d.y) * (b.x - d.x);
 - // 面积符号相同则两点在线段同侧,不相交 (对点在线段上的情况,本例当作不相交处理);
 - if ( area_abc*area_abd>=0 ) {
 - return false;
 - }
 - // 三角形cda 面积的2倍
 - var area_cda = (c.x - a.x) * (d.y - a.y) - (c.y - a.y) * (d.x - a.x);
 - // 三角形cdb 面积的2倍
 - // 注意: 这里有一个小优化.不需要再用公式计算面积,而是通过已知的三个面积加减得出.
 - var area_cdb = area_cda + area_abc - area_abd ;
 - if ( area_cda * area_cdb >= 0 ) {
 - return false;
 - }
 - //计算交点坐标
 - var t = area_cda / ( area_abd- area_abc );
 - var dx= t*(b.x - a.x),
 - dy= t*(b.y - a.y);
 - return { x: a.x + dx , y: a.y + dy };
 - }
 
最后 计算交点坐标的部分 和算法二同理.
算法三在算法二的基础上, 大大简化了计算步骤, 代码也更精简. 可以说,是三种算法里, 最好的.实际测试结果也是如此.
当然必须坦诚的来说, 在Javascript里, 对于普通的计算, 三种算法的时间复杂度其实是差不多的(尤其是V8引擎下). 
我的测试用例里也是进行变态的百万次级别的线段相交测试 才能拉开三种算法之间的差距.
不过本着精益求精 以及学习的态度而言, 追求一个更好的算法, 总是有其积极意义的.
好了 不啰嗦了, 就到这里吧. 
现学现卖的东西, 难免有错误, 还请大家不吝斧正. 先谢谢啦
求两条线段交点zz的更多相关文章
- 两条线段求交点+叉积求面积  poj 1408
		
题目链接:https://vjudge.net/problem/POJ-1408 题目是叫我们求出所有四边形里最大的那个的面积. 思路:因为这里只给了我们正方形四条边上的点,所以我们要先计算横竖线段两 ...
 - 平面内,线与线 两条线找交点 两条线段的位置关系(相交)判定与交点求解 C#
		
个人亲自编写.测试,可以正常使用 道理看原文,这里不多说 网上找到的几篇基本都不能用的 C#代码 bool Equal(float f1, float f2) { return (Math ...
 - 计算几何--判断两条线段相交--poj 2653
		
Pick-up sticks Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 8862 Accepted: 3262 De ...
 - 团体程序设计天梯赛-练习集L1-008. 求整数段和
		
L1-008. 求整数段和 时间限制 400 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作者 杨起帆 给定两个整数A和B,输出从A到B的所有整数以及这些 ...
 - Pick-up sticks(判断两条线段是否相交)
		
Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 8351 Accepted: 3068 Description Stan has ...
 - *循环-01. 求整数段和【help】
		
/* * Main.c * 循环-01. 求整数段和 * Created on: 2014年6月18日 * Author: Boomkeeper ***测试木有通过**** */ #include & ...
 - MySql 求一段时间范围内的每一天,每一小时,每一分钟
		
平常经常会求一段时间内的每一天统计数据,或者每一时点的统计数据.但是mysql本身是没有直接获取时点列表的函数或表.下面是自己用到的一些方法,利用临时变量和一个已存在的比较多数据(这个需要根据实际情况 ...
 - hdu 2857:Mirror and Light(计算几何,点关于直线的对称点,求两线段交点坐标)
		
Mirror and Light Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
 - Help Hanzo lightof 1197 求一段区间内素数个数,[l,r] 在 [1,1e9] 范围内。r-l<=1e5; 采用和平常筛素数的方法。平移区间即可。
		
/** 题目:Help Hanzo lightof 1197 链接:https://vjudge.net/contest/154246#problem/M 题意:求一段区间内素数个数,[l,r] 在 ...
 
随机推荐
- Zabbix 监控 Nginx(四)
			
简介: 如何使用 Zabbix 监控 Nginx 状态 ? 1.获取 Nginx 状态( HTTP Stub Status ) [root@localhost ~]# /apps/product/ng ...
 - ubuntu系统修改mysql字符集
			
1.进入mysql,查看默认字符集: mysql>show variables like 'char%'; 2.退出mysql; 3.输入命令:sudo gedit /etc/mysql/con ...
 - [Linux] Linux指令汇总(持续更新中...)
			
写在前面: 以前真心没有玩过Linux系统,总感觉整天摆弄Linux的同学都是大牛.如今,在公司里实习需要远程登录Linux服务器,所有的代码都要在开发板上完成,所以被逼无奈也不得不定下心来好好学学L ...
 - TCP/IP 和 Socket 的关系
			
要写网络程序就必须用Socket,这是程序员都知道的.而且,面试的时候,我们也会问对方会不会Socket编程?一般来说,很多人都会说,Socket编程基本就是listen,accept以及send,w ...
 - Asp.Net Core--授权介绍
			
翻译如下: 授权指的是确定一个用户能够做什么的过程.例如用户可以Adam能够创建一个文档库,添加文档,编辑文档并将其删除.用户Bob可能只被授权在单个库中读取文件. 授权与验证,这是查明谁一个用户的过 ...
 - javascript数据结构-优先队列
			
这里之所以扩充一个 有限队列 是因为,生活使用中队列通常会附加优先级,比如排队买票,一般老人和军人等会有优先权限. 实现:继承上篇的 普通队列实现.这里用一种方法,入队的时候,进行排序插入到指定位置, ...
 - eclipse导入重复的项目、eclipse设置默认注释
 - MySQL索引的设计和使用
			
一.索引可以有效地提升SELECT操作的性能,同时会影响UPDATE.CREATE和DELETE操作的性能.每种引擎对于表的索引有数量和长度的限制. 二.索引的设计原则 (A) 搜索的索引列,不一定是 ...
 - 报错注入分析之(count()、rand()、group by)分析,被大佬称为floor报错注入
			
PS:在这几天的学习当中很多的文章都将此注入方式称之为“floor报错分析”但经过我这几天的学习.个人觉得不该如此称呼!若君有意请详细阅读此篇文章.特别感谢米怀特的开导,说句实在的研究这个注入有四天了 ...
 - canvas的简单圆形进度条
			
window.onload = function(){ function arc(canvas,number){ var canvas = document.getElementById(canvas ...