• 第一周

      机器学习的类型,以及何时使用机器学习

      我们将首先简单介绍线性回归和机器学习。这将让你熟悉这些领域的常用术语,你需要了解的技术进展,并了解深度学习在更大的机器学习背景中的位置。

      直播:线性回归

      WEEK 1
      Types of Machine Learning and when to use Machine Learning
      Live session: Linear regression from scratch

    • 第二周

      神经网络的架构和类型

      然后,我们将深入探索神经网络,并了解各种规范架构,如 AlexNet、LeNet 等。我们将使用这些神经网络将含有数字的图像自动转换为相应的数字。

      直播:数值分类

      WEEK 2
      Neural Network Architecture + Types
      Live session: Numerical classification from scratch

    • 第三周

      云计算和情绪分析

      我们将使用 GPU 云计算训练深层神经网络,使用相关模型对目标文本进行简单的情绪分析。

      直播:情绪分析入门,云计算详细指导

      WEEK 3
      Cloud computing + sentiment analysis
      Live session: Sentiment Analysis from scratch + cloud computing detailed instructions

  • 第四周

    数学标记法和推荐系统

    这周,我们将探索推荐系统的世界,例如 Netflix,亚马逊和其他网站使用的那些。你还将学习线性代数基础知识,在整个深度学习课程中,这都很有用。

    直播:多种数学示例和推荐系统

    WEEK 4
    Math Notation + recommender systems
    Live session: Various math examples + recommender system from scratch

  • 第五周

    数据准备(数据清洗、正则化、降维)

    要实际应用深度学习,关键之一是收集正确的训练数据。在本课中,我们将探讨可以用来清洗和正则化数据的各种技术,让你训练出有效的模型。

    直播:数据准备

    WEEK 5
    Data preparation (cleaning, regularization, dimensionality reduction)
    Live session: Data prep from scratch

  • 第六周

    无人机图像追踪

    卷积神经网络(CNN)是目前神经网络领域最令人振奋的进步之一,它现在已经可以比人类更出色地对图像中的物体分类。在本课中,我们将学习这些神经网络背后的原理,并使用它们来追踪无人机图像。

    直播:图片分类

    WEEK 6
    Drone image tracking
    Live session: Image classification from scratch

  • 第七周

    预测

    在本课中,我们将了解递归神经网络(RNN),一种特别适合时间序列数据的神经网络架构。我们会把它应用到一些最重要的时间序列数据——股票价格!

    直播:股票价格预测

    WEEK 7
    Stock prediction
    Live session: Stock prediction from scratch

  • 第八周

    艺术品生成

    除了简单的预测,深层神经网络现在也能够基于样本生成音乐,图像和艺术品。在本课中,我们将通过一种称为“风格迁移(Style Transfer)”的技术,使用神经网络来创建基于我们输入的艺术品的新艺术品。

    直播:艺术风格迁移

    WEEK 8
    Art generation
    Live session: Artistic Style transfer from scratch

  • 第九周

    音乐生成(将 LSTM 神经网络应用于音频)

    正如 DeepMind 著名的 Wavenet 论文所表明,神经网络也可以应用于处理音频。在本课中,我们将使用一种称为 LSTM 的递归神经网络来基于现有样本生成新的音乐片段。

    直播:音乐生成

    WEEK 9
    Music generation (LSTMs applied to Audio)
    Live session: Generating music from scratch

  • 第十周

    诗歌生成(将 LSTM 神经网络应用于自然语言处理)

    我们已经生成了图像和音乐,本周,我们将扩展到文本和语言,使用 LSTM 来基于训练数据生成新颖的书写样本。

    直播:文本生成

    WEEK 10
    Poetry generation (LSTMs applied to NLP)
    Live session: Text generation from scratch

  • 第十一周

    语言翻译(序列至序列学习)

    机器翻译最近取得的进展,很大程度上归功于神经网络。最新版本的谷歌翻译和百度翻译都使用深度学习架构,来将文字从一种语言翻译成另一种语言。这是使用一种称为序列至序列学习(Sequence to Sequence Learning)的过程完成的,我们将在本课中探讨。

    直播:语言翻译

    W E E K 11
    Language translation (sequence to sequence)
    Live session: Language translation from scratch

  • 第十二周

    语音聊天机器人 QA 系统

    我们进一步探索序列至序列学习,构建我们自己的聊天机器人 QA 系统,回答用户的各类问题。

    直播:聊天机器人

    WEEK 12
    Chatbot QA System with voice
    Live session: Chatbot from scratch

  • 第十三周

    游戏机器人(通过蒙特卡洛树搜索进行强化学习)

    深度学习领域最有趣的一些进展,发生在增强学习领域。神经网络通过动态的即时数据学习并调整,而不是使用过时的数据来训练。我们将应用强化学习构建简单的游戏机器人,让它可以在各种 Atari 游戏中获胜。

    直播:游戏机器人

    WEEK 13
    Game bot 2D (reinforcement learning via Monte-Carlo tree search)
    Live session: Game bot from scratch

  • 第十四周

    图片压缩

    深度学习也可以用来显著地改善压缩技术。在本课中,我们将使用深度学习来构建自动编码器,它可以自动找到数据稀疏样本。

    直播:自动编码器

    WEEK 14
    Image compression
    Live session: Autoencoder from scratch

  • 第十五周

    数据可视化

    在本课中,你将应用深层学习来检测数据中的异常值。这在用来防止信用卡欺诈的应用中非常有用。

    直播:数据可视化

    WEEK 15
    Data visualization
    Live session: Data visualization from scratch

  • 第十六周

    图片生成

    生成对抗网络(GAN)是深度学习中最深层的进步之一。你将探索这个新概念,使用计算机生成图像。大多数人不会相信这些图片是计算机生成的!

    直播:生成对抗网络(GAN)

    WEEK 16
    Image generation
    Live session: Generative adversarial network from scratch

  • 第十七周

    小样本学习(概率规划)

    最后,我们将介绍小样本学习(one-shot learning)——神经网络只能从一个(或几个)样本中学习,而不是大量数据。

    直播:小样本学习

    WEEK 17
    One-shot learning (Probabilistic Programming)
    Live session: One shot learning from scratch

    实战项目 1

    你的第一个神经网络  Your First Neural Network

    搭建一个简单的神经网络,预测共享单车的使用情况。

    实战项目 2

    物体识别  Object Recognition

    搭建一个神经网络,可以识别图片中的物体。

    实战项目 3

    生成电视剧剧本  Generate TV Scripts

    使用深度学习,为你最喜爱的电视连续剧生成剧本。

    实战项目 4

    开发翻译机器人 Make a Translation Chatbot

    开发一个翻译机器人,可以在你与朋友聊天时帮你即时翻译。

    实战项目 5

    生成人脸  Generate Faces

    使用生成对抗网络(GAN)来生成原创的人脸图像。

【Deep Learning Nanodegree Foundation笔记】第 0 课:课程计划的更多相关文章

  1. 【Deep Learning Nanodegree Foundation笔记】第 1 课:INTRODUCTION Welcome

    Welcome to the Deep Learning Nanodegree Foundations Program! In this lesson, you'll meet your instru ...

  2. 【Deep Learning Nanodegree Foundation笔记】第 10 课:Sentiment Analysis with Andrew Trask

    In this lesson, Andrew Trask, the author of Grokking Deep Learning, will walk you through using neur ...

  3. 【Deep Learning Nanodegree Foundation笔记】第 7 课:NEURAL NETWORKS Intro to Neural Networks

    In this lesson, you'll dive deeper into the intuition behind Logistic Regression and Neural Networks ...

  4. 【Deep Learning Nanodegree Foundation笔记】第 5 课:Logistic Regression

    Learn about linear regression and logistic regression models. These simple machine learning models a ...

  5. 【Deep Learning Nanodegree Foundation笔记】第 9 课:Model Evaluation and Validation

    In this lesson, you'll learn some of the basics of training models. You'll learn the power of testin ...

  6. Deep Learning.ai学习笔记_第一门课_神经网络和深度学习

    目录 前言 第一周(深度学习引言) 第二周(神经网络的编程基础) 第三周(浅层神经网络) 第四周(深层神经网络) 前言 目标: 掌握神经网络的基本概念, 学习如何建立神经网络(包含一个深度神经网络), ...

  7. Deep Learning.ai学习笔记_第五门课_序列模型

    目录 第一周 循环序列模型 第二周 自然语言处理与词嵌入 第三周 序列模型和注意力机制 第一周 循环序列模型 在进行语音识别时,给定一个输入音频片段X,并要求输出对应的文字记录Y,这个例子中输入和输出 ...

  8. Deep Learning.ai学习笔记_第四门课_卷积神经网络

    目录 第一周 卷积神经网络基础 第二周 深度卷积网络:实例探究 第三周 目标检测 第四周 特殊应用:人脸识别和神经风格转换 第一周 卷积神经网络基础 垂直边缘检测器,通过卷积计算,可以把多维矩阵进行降 ...

  9. Deep Learning.ai学习笔记_第三门课_结构化机器学习项目

    目录 第一周 机器学习策略(1) 第二周 机器学习策略(2) 目标:学习一些机器学习优化改进策略,使得搭建的学习模型能够朝着最有希望的方向前进. 第一周 机器学习策略(1) 搭建机器学习系统的挑战:尝 ...

随机推荐

  1. CH5102/SPOJ?? Mobile Service/P4046 [JSOI2010]快递服务[线性dp+卡常]

    http://contest-hunter.org:83/contest/0x50%E3%80%8C%E5%8A%A8%E6%80%81%E8%A7%84%E5%88%92%E3%80%8D%E4%B ...

  2. MFC界面库BCGControlBar v30.1——Grid/Report控件

    亲爱的BCGSoft用户,我们非常高兴地宣布BCGControlBar Professional for MFC和BCGSuite for MFC v30.1正式发布!此版本包含themed find ...

  3. Django-csrf中间件

    一.详解csrf原理 csrf要求发送post,put,或者delete请求的时候,是先以get方式发送请求,服务端响应时会分配一个随机字符串给客户端,客户端第二次发送post,put或delete请 ...

  4. JQ其他

    关于页面元素的引用 通过jquery的$()引用元素包括通过id.class.元素名以及元素的层级关系及dom或者xpath条件等方法,且返回的对象为jquery对象(集合对象),不能直接调用dom定 ...

  5. 窗体操作:GetWindowLong()

    函数原型: LONG GetWindowLong( HWND hWnd,int nIndex )   参数: hWnd:指定窗口的句柄 nIndex:需要获得的信息的类型      值         ...

  6. Unity3D_(游戏)2D坦克大战 像素版

    2D坦克大战    像素版 游戏规则: 玩家通过上.下.左.右移动坦克,空格键发射子弹 敌人AI出身时朝向己方大本营(未防止游戏快速结束,心脏上方三个单位障碍物设为刚体) 当玩家被击杀次数>=3 ...

  7. postman 测试api接口

    安装:https://www.getpostman.com/ 谷歌插件安装需要翻墙才能访问,那么直接去官网下载pc端 代码图片: 非常简单 post: 代码图片: 剪头地方,必选

  8. request.getAttribute()和request.getParameter()两个方法的区别

    request.getAttribute()获得的数据必须曾经有过setAttibute()过: 而request.getParameter()获得是客户端POST或者GET请求时所携带的参数的值 g ...

  9. Ruby的异常处理

    Ruby在处理0.1+0.2是会出现精度问题: 许多语言都有类似问题,详见网址:http://0.30000000000000004.com/ Ruby的异常处理 如果异常处理范围是整个方法体,可以省 ...

  10. 二、linux下apache2.2.11+php5.6.3的环境配置

    参考文献:http://www.92csz.com/study/linux/16.htm 本节部分操作会直接使用上一节(http://www.cnblogs.com/yxpblog/p/4627509 ...