设计了两个隐藏层,激活函数是tanh,使用Adam优化算法,学习率随着epoch的增大而调低

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data #载入数据集
mnist = input_data.read_data_sets("MNIST_data",one_hot=True) #每个批次的大小
batch_size = 32
#计算一共有多少个批次
n_batch = mnist.train.num_examples // batch_size #定义两个placeholder
x = tf.placeholder(tf.float32,[None,784])
y = tf.placeholder(tf.float32,[None,10])
keep_prob=tf.placeholder(tf.float32)
lr = tf.Variable(0.001, dtype=tf.float32) #创建一个简单的神经网络
W1 = tf.Variable(tf.truncated_normal([784,500],stddev=0.1))
b1 = tf.Variable(tf.zeros([500])+0.1)
L1 = tf.nn.tanh(tf.matmul(x,W1)+b1)
L1_drop = tf.nn.dropout(L1,keep_prob) W2 = tf.Variable(tf.truncated_normal([500,300],stddev=0.1))
b2 = tf.Variable(tf.zeros([300])+0.1)
L2 = tf.nn.tanh(tf.matmul(L1_drop,W2)+b2)
L2_drop = tf.nn.dropout(L2,keep_prob) W3 = tf.Variable(tf.truncated_normal([300,10],stddev=0.1))
b3 = tf.Variable(tf.zeros([10])+0.1)
prediction = tf.nn.softmax(tf.matmul(L2_drop,W3)+b3) #交叉熵代价函数
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction))
#训练
train_step = tf.train.AdamOptimizer(lr).minimize(loss) #初始化变量
init = tf.global_variables_initializer() #结果存放在一个布尔型列表中
correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))#argmax返回一维张量中最大的值所在的位置
#求准确率
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32)) with tf.Session() as sess:
sess.run(init)
for epoch in range(51):
sess.run(tf.assign(lr, 0.001 * (0.95 ** epoch)))
for batch in range(n_batch):
batch_xs,batch_ys = mnist.train.next_batch(batch_size)
sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys,keep_prob:1.0}) learning_rate = sess.run(lr)
acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels,keep_prob:1.0})
print ("Iter " + str(epoch) + ", Testing Accuracy= " + str(acc) + ", Learning Rate= " + str(learning_rate)) #
Iter 0, Testing Accuracy= 0.954, Learning Rate= 0.001
Iter 1, Testing Accuracy= 0.9624, Learning Rate= 0.00095
Iter 2, Testing Accuracy= 0.9668, Learning Rate= 0.0009025
Iter 3, Testing Accuracy= 0.9665, Learning Rate= 0.000857375
Iter 4, Testing Accuracy= 0.9725, Learning Rate= 0.00081450626
Iter 5, Testing Accuracy= 0.9738, Learning Rate= 0.0007737809
Iter 6, Testing Accuracy= 0.9769, Learning Rate= 0.0007350919
Iter 7, Testing Accuracy= 0.9771, Learning Rate= 0.0006983373
Iter 8, Testing Accuracy= 0.9777, Learning Rate= 0.0006634204
Iter 9, Testing Accuracy= 0.9764, Learning Rate= 0.0006302494
Iter 10, Testing Accuracy= 0.9753, Learning Rate= 0.0005987369
Iter 11, Testing Accuracy= 0.9779, Learning Rate= 0.0005688001
Iter 12, Testing Accuracy= 0.9777, Learning Rate= 0.0005403601
Iter 13, Testing Accuracy= 0.9774, Learning Rate= 0.0005133421
Iter 14, Testing Accuracy= 0.9772, Learning Rate= 0.000487675
Iter 15, Testing Accuracy= 0.9803, Learning Rate= 0.00046329122
Iter 16, Testing Accuracy= 0.9802, Learning Rate= 0.00044012666
Iter 17, Testing Accuracy= 0.9791, Learning Rate= 0.00041812033
Iter 18, Testing Accuracy= 0.9806, Learning Rate= 0.00039721432
Iter 19, Testing Accuracy= 0.9803, Learning Rate= 0.0003773536
Iter 20, Testing Accuracy= 0.9796, Learning Rate= 0.00035848594
Iter 21, Testing Accuracy= 0.9803, Learning Rate= 0.00034056162
Iter 22, Testing Accuracy= 0.9788, Learning Rate= 0.00032353355
Iter 23, Testing Accuracy= 0.9819, Learning Rate= 0.00030735688
Iter 24, Testing Accuracy= 0.975, Learning Rate= 0.000291989
Iter 25, Testing Accuracy= 0.9808, Learning Rate= 0.00027738957
Iter 26, Testing Accuracy= 0.9814, Learning Rate= 0.0002635201
Iter 27, Testing Accuracy= 0.9802, Learning Rate= 0.00025034408
Iter 28, Testing Accuracy= 0.9809, Learning Rate= 0.00023782688
Iter 29, Testing Accuracy= 0.9811, Learning Rate= 0.00022593554
Iter 30, Testing Accuracy= 0.9816, Learning Rate= 0.00021463877
Iter 31, Testing Accuracy= 0.9812, Learning Rate= 0.00020390682
Iter 32, Testing Accuracy= 0.9815, Learning Rate= 0.00019371149
Iter 33, Testing Accuracy= 0.9815, Learning Rate= 0.0001840259
Iter 34, Testing Accuracy= 0.9813, Learning Rate= 0.00017482461
Iter 35, Testing Accuracy= 0.981, Learning Rate= 0.00016608338
Iter 36, Testing Accuracy= 0.9806, Learning Rate= 0.00015777921
Iter 37, Testing Accuracy= 0.9818, Learning Rate= 0.00014989026
Iter 38, Testing Accuracy= 0.982, Learning Rate= 0.00014239574
Iter 39, Testing Accuracy= 0.9813, Learning Rate= 0.00013527596
Iter 40, Testing Accuracy= 0.9818, Learning Rate= 0.00012851215
Iter 41, Testing Accuracy= 0.9827, Learning Rate= 0.00012208655
Iter 42, Testing Accuracy= 0.9826, Learning Rate= 0.00011598222
Iter 43, Testing Accuracy= 0.9814, Learning Rate= 0.00011018311
Iter 44, Testing Accuracy= 0.9823, Learning Rate= 0.000104673956
Iter 45, Testing Accuracy= 0.9828, Learning Rate= 9.944026e-05
Iter 46, Testing Accuracy= 0.9824, Learning Rate= 9.446825e-05
Iter 47, Testing Accuracy= 0.9824, Learning Rate= 8.974483e-05
Iter 48, Testing Accuracy= 0.983, Learning Rate= 8.525759e-05
Iter 49, Testing Accuracy= 0.9827, Learning Rate= 8.099471e-05
Iter 50, Testing Accuracy= 0.9828, Learning Rate= 7.6944976e-05

最终达到了0.9828的准确率

手工设计神经MNIST使分类精度达到98%以上的更多相关文章

  1. 机器学习与Tensorflow(3)—— 机器学习及MNIST数据集分类优化

    一.二次代价函数 1. 形式: 其中,C为代价函数,X表示样本,Y表示实际值,a表示输出值,n为样本总数 2. 利用梯度下降法调整权值参数大小,推导过程如下图所示: 根据结果可得,权重w和偏置b的梯度 ...

  2. ECCV 2018 | Bi-Real net:超XNOR-net 10%的ImageNet分类精度

    这项工作由香港科技大学,腾讯 AI lab,以及华中科技大学合作完成,目的是提升二值化卷积神经网络(1-bit CNN)的精度.虽然 1-bit CNN 压缩程度高,但是其当前在大数据集上的分类精度与 ...

  3. 10. 混淆矩阵、总体分类精度、Kappa系数

    一.前言 表征分类精度的指标有很多,其中最常用的就是利用混淆矩阵.总体分类精度以及Kappa系数. 其中混淆矩阵能够很清楚的看到每个地物正确分类的个数以及被错分的类别和个数.但是,混淆矩阵并不能一眼就 ...

  4. 3.keras-简单实现Mnist数据集分类

    keras-简单实现Mnist数据集分类 1.载入数据以及预处理 import numpy as np from keras.datasets import mnist from keras.util ...

  5. 6.keras-基于CNN网络的Mnist数据集分类

    keras-基于CNN网络的Mnist数据集分类 1.数据的载入和预处理 import numpy as np from keras.datasets import mnist from keras. ...

  6. FasterRCNN 提升分类精度(转)

    近年来,随着深度学习的崛起,计算机视觉得到飞速发展.目标检测作为计算机视觉的基础算法,也搭上了深度学习的快车.基于Proposal的检测框架,从R-CNN到Faster R-CNN,算法性能越来越高, ...

  7. Win8设计——现代设计,可使你的应用脱颖而出的元素

    Microsoft 设计准则 Windows 在现代设计方面遥遥领先.它采用了“真实数字”原则并从瑞士风格和交通枢纽的寻路系统中汲取灵感. 阅读详细信息 设计元素 动态磁贴 动态磁贴向你提供了一个独特 ...

  8. MNIST数据集分类简单版本

      import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data #载入数据集 mnist = ...

  9. 神经网络MNIST数据集分类tensorboard

    今天分享同样数据集的CNN处理方式,同时加上tensorboard,可以看到清晰的结构图,迭代1000次acc收敛到0.992 先放代码,注释比较详细,变量名字看单词就能知道啥意思 import te ...

随机推荐

  1. DevExpress WPF v19.1新版亮点:Data Editors等控件新功能

    行业领先的.NET界面控件DevExpress 日前正式发布v19.1版本,本站将以连载的形式介绍各版本新增内容.在本系列文章中将为大家介绍DevExpress WPFv19.1中新增的一些控件及部分 ...

  2. java选做猜数字

    程序设计思想 第一步:使用随机数生成1-100的数字 第二步:让用户输入数字 第三步:输入的数字与生成数字不同执行下一步,相同执行第五步 第四步:比较两数大小并输出结果,并返回第二步 第五步:输出猜对 ...

  3. h5页面弹窗时页面固定(弹窗下面的页面不滑动)

    页面出现弹窗时,底部页面不能随之滑动怎么解决? 只需将页面的body增加一个样式 overflow:hidden;就能解决 jq: //开启弹窗 $('body').attr('style','ove ...

  4. vuex 管理状态

    来分析下vuex的管理状态吧,如果你用过react中的redux的管理树,那我觉得vuex对你来说很容易掌握 如果你还是不太熟悉vuex是什么,那先看下官网https://vuex.vuejs.org ...

  5. python实例31[生成随即的密码]

    代码: import random import string import time # strong.high = 3  #random for the whole passwd #storng. ...

  6. DOM事件处理函数

    事件 JavaScript与HTML之间的交互是通过事件实现的. 事件,就是文档或浏览器窗口中发生的一些特定的交互瞬间.可以使用侦听器(或是处理程序)来预定事件,以便事件发生时执行相应的代码 IE9. ...

  7. C# for循环测试

  8. 51Nod 1413 权势二进制 (思维)

    题意 : 一个十进制整数被叫做权势二进制, 当他的十进制表示的时候只由0或1组成.例如0, 1, 101, 110011都是权势二进制而2, 12, 900不是.当给定一个n (1<=n< ...

  9. dell笔记本 win10 下安装 ubuntu16.04 踩坑记录

    硬件配置情况: dell笔记本-灵越-5577 —— I5七代(带有集显),8G内存条DDR4,GTX1050,128G固态硬盘,1T机械硬盘. 固态硬盘划分为3部分,100GB给win10的C盘,1 ...

  10. 从源码编译安装PCL并运行第一个小例子

    如何通过源码编译方式安装PCL 对于很多想学习PCL的同学而言,往往会被如何安装困扰很长时间.我就是这其中的一员,为了不让大家在安装问题上浪费太多时间,我决心写下这篇小小的随笔,希望对大家有所帮助. ...