$2-SAT$问题指的是对于若干限制求出一组可行解的问题。

考虑对于$n$个值域为${0,1}$的变量$x_1 , x_2 ,...,x_n$ 满足若干限制:

若 $x_i = p$ 则 $x_j = q ( i,j\in[1,n],p,q \in \{0,1\})$

我们考虑对于每一个变量$x_i$开一个值域$x_{i,0} , x_{i,1}$表示第$i$个变量取值为$0/1$的点。

然后考虑每一组命题, 若 $x_i = p$ 则 $x_j = q , i,j\in[1,n],p,q \in \{0,1\}$ ,

首先把$x_{i,p}$和$x_{j,q}$两个点连一条单向边。

并且 由于这个命题非常特殊,值域大小只为2 , 其逆否命题也是限制(可以显然的反证)。

于是就把$x_{j,1-q}$和$x_{i,1-p}$ 连一条单向边。

然后对于上面的图跑tarjan找出scc,如果$x_{i,0}$和$x_{i,1}$在同一连通块中了,

说明下列命题成立: “若$x_i = 0$则$x_i = 1$ ” ,“若$x_i = 1$则$x_i = 0$ ” 所以此时答案无解。

如何构造出一组解呢,由于tarjan的dfs特性,

设$c_i$表示通过tarjan算法求出的连通块编号(这本身就是逆拓扑序的)。

$val_i = c_{x_{i,0}} > c_{x_{i,1}}$  就构造出$val_i , i\in [1,n]$一组合法解了。

P4782 【模板】2-SAT 问题

设变量$x_i \in \{0,1\}$ ,给出若干组关系:$x_i = p $ 或者 $x_j = q$

如果$x_i , (i\in [1,n])$有解,先输出"POSIBLE"然后输出一组合法解。

如果$x_i ,  (i\in [1,n])$无解,则输出"IMPOSIBLE"即可。

对于100%的数据$n,m\leq 10^6$

Sol:

$x_i$为$p$ 或 $x_j$为$q$ 可以拆成$2\times 2$对逻辑关系。

  • 若$x_i$为$1-p$,则$x_j$为$q$ , 若$x_j$为$1-q$,则$x_i$为$p$
  • 若$x_j$为$1-q$,则$x_i$为$p$ , 若$x_i$为$1-p,$ 则$x_j$为$q$

实现方面,只需:$[1,N]$为原来元素的$0$域,$[N+1,2N]$ 为原来元素的$1$域.

# include <bits/stdc++.h>
using namespace std;
const int N=2e6+,M=4e6+;
struct rec{ int pre,to;}a[M];
stack<int>s;
bool ins[N];
int cnt,tot,n,m,head[N],c[N],dfn[N],low[N],val[N];
void adde(int u,int v)
{
a[++tot].pre=head[u];
a[tot].to=v;
head[u]=tot;
}
void tarjan(int u)
{
dfn[u]=low[u]=++dfn[];
s.push(u);ins[u]=;
for (int i=head[u];i;i=a[i].pre){
int v=a[i].to;
if (!dfn[v]) {
tarjan(v);
low[u]=min(low[u],low[v]);
} else if (ins[v]) low[u]=min(low[u],dfn[v]);
}
if (dfn[u]==low[u]) {
cnt++; int v;
do {
v=s.top(); s.pop();
ins[v]=; c[v]=cnt;
} while (u!=v);
}
}
int main()
{
scanf("%d%d",&n,&m);
for (int i=;i<=m;i++) {
int s,ps,t,pt; scanf("%d%d%d%d",&s,&ps,&t,&pt);
adde(s+(-ps)*n,t+pt*n); adde(t+(-pt)*n,s+ps*n);
adde(t+(-pt)*n,s+ps*n); adde(s+(-ps)*n,t+pt*n);
}
for (int i=;i<=*n;i++) if (!dfn[i]) tarjan(i);
for (int i=;i<=n;i++) if (c[i]==c[i+n]) {
puts("IMPOSSIBLE"); return ;
}
for (int i=;i<=n;i++) val[i]=c[i]>c[n+i];
puts("POSSIBLE");
for (int i=;i<=n;i++) printf("%d ",val[i]); puts("");
return ;
}

2-SAT (two-statisfiability) 算法 学习笔记的更多相关文章

  1. C / C++算法学习笔记(8)-SHELL排序

    原始地址:C / C++算法学习笔记(8)-SHELL排序 基本思想 先取一个小于n的整数d1作为第一个增量(gap),把文件的全部记录分成d1个组.所有距离为dl的倍数的记录放在同一个组中.先在各组 ...

  2. Manacher算法学习笔记 | LeetCode#5

    Manacher算法学习笔记 DECLARATION 引用来源:https://www.cnblogs.com/grandyang/p/4475985.html CONTENT 用途:寻找一个字符串的 ...

  3. Johnson算法学习笔记

    \(Johnson\)算法学习笔记. 在最短路的学习中,我们曾学习了三种最短路的算法,\(Bellman-Ford\)算法及其队列优化\(SPFA\)算法,\(Dijkstra\)算法.这些算法可以快 ...

  4. 某科学的PID算法学习笔记

    最近,在某社团的要求下,自学了PID算法.学完后,深切地感受到PID算法之强大.PID算法应用广泛,比如加热器.平衡车.无人机等等,是自动控制理论中比较容易理解但十分重要的算法. 下面是博主学习过程中 ...

  5. Johnson 全源最短路径算法学习笔记

    Johnson 全源最短路径算法学习笔记 如果你希望得到带互动的极简文字体验,请点这里 我们来学习johnson Johnson 算法是一种在边加权有向图中找到所有顶点对之间最短路径的方法.它允许一些 ...

  6. 算法学习笔记——sort 和 qsort 提供的快速排序

    这里存放的是笔者在学习算法和数据结构时相关的学习笔记,记录了笔者通过网络和书籍资料中学习到的知识点和技巧,在供自己学习和反思的同时为有需要的人提供一定的思路和帮助. 从排序开始 基本的排序算法包括冒泡 ...

  7. R语言实现关联规则与推荐算法(学习笔记)

    R语言实现关联规则 笔者前言:以前在网上遇到很多很好的关联规则的案例,最近看到一个更好的,于是便学习一下,写个学习笔记. 1 1 0 0 2 1 1 0 0 3 1 1 0 1 4 0 0 0 0 5 ...

  8. 二次剩余Cipolla算法学习笔记

    对于同余式 \[x^2 \equiv n \pmod p\] 若对于给定的\(n, P\),存在\(x\)满足上面的式子,则乘\(n\)在模\(p\)意义下是二次剩余,否则为非二次剩余 我们需要计算的 ...

  9. SPFA算法学习笔记

    一.理论准备 为了学习网络流,先水一道spfa. SPFA算法是1994年西南交通大学段凡丁提出,只要最短路径存在,SPFA算法必定能求出最小值,SPFA对Bellman-Ford算法优化的关键之处在 ...

  10. 算法学习笔记(三) 最短路 Dijkstra 和 Floyd 算法

    图论中一个经典问题就是求最短路.最为基础和最为经典的算法莫过于 Dijkstra 和 Floyd 算法,一个是贪心算法,一个是动态规划.这也是算法中的两大经典代表.用一个简单图在纸上一步一步演算,也是 ...

随机推荐

  1. SpringBoot 启动失败 Failed to determine a suitable driver class 问题解决方案

    Description: Failed to auto-configure a DataSource: 'spring.datasource.url' is not specified and no ...

  2. [BZOJ 1563] [NOI 2009] 诗人小G(决策单调性)

    [BZOJ 1563] [NOI 2009] 诗人小G(决策单调性) 题面 一首诗包含了若干个句子,对于一些连续的短句,可以将它们用空格隔开并放在一行中,注意一行中可以放的句子数目是没有限制的.小 G ...

  3. Android渐变色xml配置

    这里渐变色: <?xml version="1.0" encoding="utf-8"?> <shape xmlns:android=&quo ...

  4. 微信小程序全局属性

    通用全局属性:(前端也有) Infinity 代表正的无穷大的数值. NaN 指示某个值是不是数字值. undefined 指示未定义的值. 通用全局函数:(前端也有) decodeURI() 解码某 ...

  5. 剑指offer-孩子们的游戏(圆圈中最后剩下的数)-知识迁移能力-python

    题目描述 每年六一儿童节,牛客都会准备一些小礼物去看望孤儿院的小朋友,今年亦是如此.HF作为牛客的资深元老,自然也准备了一些小游戏.其中,有个游戏是这样的:首先,让小朋友们围成一个大圈.然后,他随机指 ...

  6. Abp添加新的Api(不扩展底层方法)

    定义新的实体类:FileManage;继承 FullAuditedEntity<Guid> 在XX.Application 中定义IXXservice及实现XXservice public ...

  7. springboot(十八)-session共享

    前言 在传统的单服务架构中,一般来说,只有一个服务器,那么不存在 Session 共享问题,但是在分布式/集群项目中,Session 共享则是一个必须面对的问题,先看一个简单的架构图: 在这样的架构中 ...

  8. 第十六篇 JS实现全选操作

    JS实现全选   嗨,同学们好,老师这里是专门教同学解决一些针对性的问题,所以说综合起来,就要靠同学自己了. 这节课我们学一个很实用的东西,全选操作!比如淘宝这种商城对吧,我的购物车,我要全选购买,或 ...

  9. C语言typedef详解

    原文链接 C语言允许用户使用 typedef 关键字来定义自己习惯的数据类型名称,来替代系统默认的基本类型名称.数组类型名称.指针类型名称与用户自定义的结构型名称.共用型名称.枚举型名称等.一旦用户在 ...

  10. On Java 8

    On Java 8本书原作者为 [美] Bruce Eckel,即<Java 编程思想>的作者.本书是事实上的 <Java 编程思想>第五版.<Java 编程思想> ...