LU分解法求逆矩阵 C语言实现
最近在网上找了下,没有找到我想要的C语言版本,找到的也是错误的。故自己写了一个,并进行了相关测试,贴出来分享。
具体的LU分解算法就不细说了,随便找本书就知道了,关键是分解的处理流程,细节特别容易出错,一切都在代码里面。
#include <stdio.h>
#include <memory.h>
#include <stdlib.h> #define N 4
#define DEBUG 1 //debug label,0即不打印相关结果,非0打印相关输出结果 void matrix_inverse_LU(float a[][N])
{
float l[N][N], u[N][N];
float l_inverse[N][N], u_inverse[N][N];
float a_inverse[N][N];
int i, j, k;
float s, t; memset(l, 0, sizeof(l));
memset(u, 0, sizeof(u));
memset(l_inverse, 0, sizeof(l_inverse));
memset(u_inverse, 0, sizeof(u_inverse));
memset(a_inverse, 0, sizeof(u_inverse)); for (i = 0; i < N;i++) //计算l矩阵对角线
{
l[i][i] = 1;
} for (i = 0;i < N;i++)
{
for (j = i;j < N;j++)
{
s = 0;
for (k = 0;k < i;k++)
{
s += l[i][k] * u[k][j];
}
u[i][j] = a[i][j] - s; //按行计算u值
} for (j = i + 1;j < N;j++)
{
s = 0;
for (k = 0; k < i; k++)
{
s += l[j][k] * u[k][i];
}
l[j][i] = (a[j][i] - s) / u[i][i]; //按列计算l值
}
} for (i = 0;i < N;i++) //按行序,行内从高到低,计算l的逆矩阵
{
l_inverse[i][i] = 1;
}
for (i= 1;i < N;i++)
{
for (j = 0;j < i;j++)
{
s = 0;
for (k = 0;k < i;k++)
{
s += l[i][k] * l_inverse[k][j];
}
l_inverse[i][j] = -s;
}
} #if DEBUG
printf("test l_inverse:\n");
for (i = 0; i < N; i++)
{
for (j = 0; j < N; j++)
{
s = 0;
for (k = 0; k < N; k++)
{
s += l[i][k] * l_inverse[k][j];
} printf("%f ", s);
}
putchar('\n');
}
#endif for (i = 0;i < N;i++) //按列序,列内按照从下到上,计算u的逆矩阵
{
u_inverse[i][i] = 1 / u[i][i];
}
for (i = 1;i < N;i++)
{
for (j = i - 1;j >=0;j--)
{
s = 0;
for (k = j + 1;k <= i;k++)
{
s += u[j][k] * u_inverse[k][i];
}
u_inverse[j][i] = -s / u[j][j];
}
} #if DEBUG
printf("test u_inverse:\n");
for (i = 0;i < N;i++)
{
for (j = 0;j < N;j++)
{
s = 0;
for (k = 0;k < N;k++)
{
s += u[i][k] * u_inverse[k][j];
} printf("%f ",s);
}
putchar('\n');
}
#endif for (i = 0;i < N;i++) //计算矩阵a的逆矩阵
{
for (j = 0;j < N;j++)
{
for (k = 0;k < N;k++)
{
a_inverse[i][j] += u_inverse[i][k] * l_inverse[k][j];
}
}
} #if DEBUG
printf("test a:\n");
for (i = 0; i < N; i++)
{
for (j = 0; j < N; j++)
{
s = 0;
for (k = 0; k < N; k++)
{
s += a[i][k] * a_inverse[k][j];
} printf("%f ", s);
}
putchar('\n');
}
#endif
} void main()
{
int i, j, k;
float a[N][N]; for (i = 0;i < N;i++)
{
for (j = 0;j < N;j++)
{
a[i][j] = rand() % 10;
}
} matrix_inverse_LU(a);
}
提醒一下,打印出来的验证结果,可能跟单位矩阵E有稍许不同,如下图所示:

主要是因为相关浮点数计算误差所致,系统原因,不是算法问题。
解决这个问题的方法,就是用更精确的double类型或者改用各适合进行科学计算的工具/语言。
LU分解法求逆矩阵 C语言实现的更多相关文章
- Matlab数值计算示例: 牛顿插值法、LU分解法、拉格朗日插值法、牛顿插值法
本文源于一次课题作业,部分自己写的,部分借用了网上的demo 牛顿迭代法(1) x=1:0.01:2; y=x.^3-x.^2+sin(x)-1; plot(x,y,'linewidth',2);gr ...
- Guass列选主元消去法和三角分解法
最近数值计算学了Guass列主消元法和三角分解法解线性方程组,具体原理如下: 1.Guass列选主元消去法对于AX =B 1).消元过程:将(A|B)进行变换为,其中是上三角矩阵.即: k从1到n-1 ...
- 寒假答辩作品——掘地求升C语言版
寒假答辩—掘地求升(C语言版) 前言 这个是作为寒假答辩作品写的. 之前考虑过用Unity写个游戏,但毕竟不熟悉C#,感觉几乎都是在套模板,而且写着不顺手,有想法却只能 看着C#发呆,很是无奈,所以决 ...
- [Architecture] 系统架构正交分解法
[Architecture] 系统架构正交分解法 前言 随着企业成长,支持企业业务的软件,也会越来越庞大与复杂.当系统复杂到一定程度,开发人员会发现很多系统架构的设计细节,很难有条理.有组织的用一张大 ...
- 利用栈实现算术表达式求值(Java语言描述)
利用栈实现算术表达式求值(Java语言描述) 算术表达式求值是栈的典型应用,自己写栈,实现Java栈算术表达式求值,涉及栈,编译原理方面的知识.声明:部分代码参考自茫茫大海的专栏. 链栈的实现: pa ...
- 分治法求一个N个元素数组的逆序数
背景 逆序数:也就是说,对于n个不同的元素,先规定各元素之间有一个标准次序(例如n个 不同的自然数,可规定从小到大为标准次序),于是在这n个元素的任一排列中,当某两个元素的先后次序与标准次序不同时, ...
- 《github一天一道算法题》:分治法求数组最大连续子序列和
看书.思考.写代码. /*************************************** * copyright@hustyangju * blog: http://blog.csdn. ...
- 时间序列分解-STL分解法
时间序列分解-STL分解法 [转载时请注明来源]:http://www.cnblogs.com/runner-ljt/ Ljt 作为一个初学者,水平有限,欢迎交流指正. STL(’Seasonal a ...
- 项目管理——WBS工作分解法
首先我们要了解什么是WBS工作分解法 工作分解结构(Work Breakdown Structure,简称WBS)跟因数分解是一个原理,就是把一个项目,按一定的原则分解,项目分解成任务,任务再分解成一 ...
随机推荐
- 设计模式:建造者模式(Builder)
流水作业大家应该都清楚吧!在流水作业中,我们可以将一些复杂的东西给构建出来,例如汽车.我们都知道汽车内部构件比较复杂,由很多部件组成,例如车轮.车门.发动机.方向盘等等,对于我们用户来说我们并不需要知 ...
- ASP.NET Core中使用Autofac进行属性注入
一些无关紧要的废话: 作为一名双修程序员(自封的),喜欢那种使用Spring的注解形式进行依赖注入或者Unity的特性形式进行依赖注入,当然,形式大同小异,但结果都是一样的,通过属性进行依赖注入. A ...
- CodeForce20C
这是一个裸的最短路的模板题,但是它需要输出路径. 用dijkstra的话首先敲一个最短路的板子,其次开一个数组p[]来记录路径,但是怎么存呢?我们需要记录每一个点的前驱,因为如果记录后边的话,一个点可 ...
- PHP 补零操作
str_pad(string,length,pad_string,pad_type)//参数 描述string //必需.规定要填充的字符串.length //必需.规定新的字符串长度.如果该值小于字 ...
- 封装CURD
<?php include ('ft.php'); $db=Danli::show(); //查询 //$re=$db->table('stree')->where(['name'= ...
- git使用技巧集合(持续更新中)
git使用技巧集合(持续更新中) 在团队协作中,git.svn等工具是非常重要的,在此只记录一些git使用过程中遇到的问题以及解决方法,并且会持续更新. 1.git commit之后,还没push,如 ...
- 关于Faster-RCNN训练细节
Faster RCNN训练: 四部训练法: Faster R-CNN,可以大致分为两个部分,一个是RPN网络,另一个是Fast R-CNN网络,前者是一种候选框(proposal)的推荐算法,而后者则 ...
- createTextNode() 方法和createTextNode()方法
<!DOCTYPE html><html><head><meta charset="utf-8"><title>菜鸟教程 ...
- Collection接口的子接口——Queue接口
https://docs.oracle.com/javase/8/docs/api/java/util/Queue.html public interface Queue<E> exten ...
- Eclipse使用github并开启命令行
1. 安装EGit插件 2. 导入git项目 选择Import: 选择“Clone URI” 输入想要导入的git项目地址和用户名密码: 选择代码分支: 一路点击next完成导入github项目即可. ...