LU分解法求逆矩阵 C语言实现
最近在网上找了下,没有找到我想要的C语言版本,找到的也是错误的。故自己写了一个,并进行了相关测试,贴出来分享。
具体的LU分解算法就不细说了,随便找本书就知道了,关键是分解的处理流程,细节特别容易出错,一切都在代码里面。
#include <stdio.h>
#include <memory.h>
#include <stdlib.h> #define N 4
#define DEBUG 1 //debug label,0即不打印相关结果,非0打印相关输出结果 void matrix_inverse_LU(float a[][N])
{
float l[N][N], u[N][N];
float l_inverse[N][N], u_inverse[N][N];
float a_inverse[N][N];
int i, j, k;
float s, t; memset(l, 0, sizeof(l));
memset(u, 0, sizeof(u));
memset(l_inverse, 0, sizeof(l_inverse));
memset(u_inverse, 0, sizeof(u_inverse));
memset(a_inverse, 0, sizeof(u_inverse)); for (i = 0; i < N;i++) //计算l矩阵对角线
{
l[i][i] = 1;
} for (i = 0;i < N;i++)
{
for (j = i;j < N;j++)
{
s = 0;
for (k = 0;k < i;k++)
{
s += l[i][k] * u[k][j];
}
u[i][j] = a[i][j] - s; //按行计算u值
} for (j = i + 1;j < N;j++)
{
s = 0;
for (k = 0; k < i; k++)
{
s += l[j][k] * u[k][i];
}
l[j][i] = (a[j][i] - s) / u[i][i]; //按列计算l值
}
} for (i = 0;i < N;i++) //按行序,行内从高到低,计算l的逆矩阵
{
l_inverse[i][i] = 1;
}
for (i= 1;i < N;i++)
{
for (j = 0;j < i;j++)
{
s = 0;
for (k = 0;k < i;k++)
{
s += l[i][k] * l_inverse[k][j];
}
l_inverse[i][j] = -s;
}
} #if DEBUG
printf("test l_inverse:\n");
for (i = 0; i < N; i++)
{
for (j = 0; j < N; j++)
{
s = 0;
for (k = 0; k < N; k++)
{
s += l[i][k] * l_inverse[k][j];
} printf("%f ", s);
}
putchar('\n');
}
#endif for (i = 0;i < N;i++) //按列序,列内按照从下到上,计算u的逆矩阵
{
u_inverse[i][i] = 1 / u[i][i];
}
for (i = 1;i < N;i++)
{
for (j = i - 1;j >=0;j--)
{
s = 0;
for (k = j + 1;k <= i;k++)
{
s += u[j][k] * u_inverse[k][i];
}
u_inverse[j][i] = -s / u[j][j];
}
} #if DEBUG
printf("test u_inverse:\n");
for (i = 0;i < N;i++)
{
for (j = 0;j < N;j++)
{
s = 0;
for (k = 0;k < N;k++)
{
s += u[i][k] * u_inverse[k][j];
} printf("%f ",s);
}
putchar('\n');
}
#endif for (i = 0;i < N;i++) //计算矩阵a的逆矩阵
{
for (j = 0;j < N;j++)
{
for (k = 0;k < N;k++)
{
a_inverse[i][j] += u_inverse[i][k] * l_inverse[k][j];
}
}
} #if DEBUG
printf("test a:\n");
for (i = 0; i < N; i++)
{
for (j = 0; j < N; j++)
{
s = 0;
for (k = 0; k < N; k++)
{
s += a[i][k] * a_inverse[k][j];
} printf("%f ", s);
}
putchar('\n');
}
#endif
} void main()
{
int i, j, k;
float a[N][N]; for (i = 0;i < N;i++)
{
for (j = 0;j < N;j++)
{
a[i][j] = rand() % 10;
}
} matrix_inverse_LU(a);
}
提醒一下,打印出来的验证结果,可能跟单位矩阵E有稍许不同,如下图所示:

主要是因为相关浮点数计算误差所致,系统原因,不是算法问题。
解决这个问题的方法,就是用更精确的double类型或者改用各适合进行科学计算的工具/语言。
LU分解法求逆矩阵 C语言实现的更多相关文章
- Matlab数值计算示例: 牛顿插值法、LU分解法、拉格朗日插值法、牛顿插值法
本文源于一次课题作业,部分自己写的,部分借用了网上的demo 牛顿迭代法(1) x=1:0.01:2; y=x.^3-x.^2+sin(x)-1; plot(x,y,'linewidth',2);gr ...
- Guass列选主元消去法和三角分解法
最近数值计算学了Guass列主消元法和三角分解法解线性方程组,具体原理如下: 1.Guass列选主元消去法对于AX =B 1).消元过程:将(A|B)进行变换为,其中是上三角矩阵.即: k从1到n-1 ...
- 寒假答辩作品——掘地求升C语言版
寒假答辩—掘地求升(C语言版) 前言 这个是作为寒假答辩作品写的. 之前考虑过用Unity写个游戏,但毕竟不熟悉C#,感觉几乎都是在套模板,而且写着不顺手,有想法却只能 看着C#发呆,很是无奈,所以决 ...
- [Architecture] 系统架构正交分解法
[Architecture] 系统架构正交分解法 前言 随着企业成长,支持企业业务的软件,也会越来越庞大与复杂.当系统复杂到一定程度,开发人员会发现很多系统架构的设计细节,很难有条理.有组织的用一张大 ...
- 利用栈实现算术表达式求值(Java语言描述)
利用栈实现算术表达式求值(Java语言描述) 算术表达式求值是栈的典型应用,自己写栈,实现Java栈算术表达式求值,涉及栈,编译原理方面的知识.声明:部分代码参考自茫茫大海的专栏. 链栈的实现: pa ...
- 分治法求一个N个元素数组的逆序数
背景 逆序数:也就是说,对于n个不同的元素,先规定各元素之间有一个标准次序(例如n个 不同的自然数,可规定从小到大为标准次序),于是在这n个元素的任一排列中,当某两个元素的先后次序与标准次序不同时, ...
- 《github一天一道算法题》:分治法求数组最大连续子序列和
看书.思考.写代码. /*************************************** * copyright@hustyangju * blog: http://blog.csdn. ...
- 时间序列分解-STL分解法
时间序列分解-STL分解法 [转载时请注明来源]:http://www.cnblogs.com/runner-ljt/ Ljt 作为一个初学者,水平有限,欢迎交流指正. STL(’Seasonal a ...
- 项目管理——WBS工作分解法
首先我们要了解什么是WBS工作分解法 工作分解结构(Work Breakdown Structure,简称WBS)跟因数分解是一个原理,就是把一个项目,按一定的原则分解,项目分解成任务,任务再分解成一 ...
随机推荐
- java 8 date time 简单样例
参考 Java 8 Time Api 使用指南-珍藏限量版 Java 8 中处理日期和时间示例 部分样例 import java.time.temporal.TemporalAdjusters; im ...
- C/C++的几个输入流
C: 1.scanf( ) 存在于<stdio.h>(C++为<cstdio>)中,根据stdin读取数据并根据参数格式进行赋值,以第一个非空格字符(空格字符如:空格,制符表, ...
- 两两内积为0(牛客多校第七场)-- CDMA
题意: 构造一个n*n的矩阵,元素只能是-1或1,任意两行内积为0(两两相乘加起来和为0). 思路: #define IOS ios_base::sync_with_stdio(0); cin.tie ...
- EM 算法(三)-GMM
高斯混合模型 混合模型,顾名思义就是几个概率分布密度混合在一起,而高斯混合模型是最常见的混合模型: GMM,全称 Gaussian Mixture Model,中文名高斯混合模型,也就是由多个高斯分布 ...
- vue项目中微信jssdk在ios签名失败
一.问题描述 1. vue项目中微信jssdk签名时,在安卓和ios是有差异的,签名时使用的url=window.location.href.split('#')[0],此时在安卓没问题,在ios会导 ...
- 利用yaml文件管理资源
利用yaml配置文件管理资源 [root@master ~]# cat nginx-deployment.yaml apiVersion: apps/v1beta2 kind: Deployment ...
- 如何在万亿级别规模的数据量上使用Spark
一.前言 Spark作为大数据计算引擎,凭借其快速.稳定.简易等特点,快速的占领了大数据计算的领域.本文主要为作者在搭建使用计算平台的过程中,对于Spark的理解,希望能给读者一些学习的思路.文章内容 ...
- JDBC2
1.JDBC连接池 public class JdbcTemplateDemo2 { //Junit单元测试,可以让方法独立执行 //1. 获取JDBCTemplate对象 private JdbcT ...
- Docker搭建Gitlab服务器
1.使用docker搜索gitlab镜像 docker search gitlab 2.下载镜像: docker pull docker.io/gitlab/gitlab-ce 3.查看docker镜 ...
- cassandra查询效率探讨
cassandra目前提倡的建表与查询方式为CQL方式,传统的cassandra-cli相关的api由于性能问题将逐步淘汰,而cassandra-cli也将在2.2版本之后被淘汰. 在CQL中,可以利 ...