题目链接

(Luogu) https://www.luogu.org/problem/P4859

(bzoj) https://www.lydsy.com/JudgeOnline/problem.php?id=3622

题解

我依然啥都不会啊……

先给\(A,B\)数组从小到大排序。

考虑容斥,设\(f[j]\)表示钦定了\(j\)个满足\(A>B\), 所有钦定方案的方案数总和。

这个怎么算?dp算。设\(dp[i][j]\)表示前\(i\)个的\(f[j]\), 然后发现转移的时候并不知道之前选的那些没有钦定的有几个比当前的大。

怎么办?转换思路,我们考虑先选出钦定的\(B\), 不考虑剩下未钦定的。那么很容易列出方程: \(dp[i][j]=dp[i-1][j]+dp[i-1][j-1]\times (t-i+1)\), 其中\(t\)为\(a_i\)大于\(B\)序列中的多少个数。

最后\(f[j]=dp[n][j]\times (n-j)!\), 完美解决。

容斥怎么办?思考组合意义或者二项式反演,总之最后是一个式子\(g[i]=\sum^n_{j=i}(-1)^{j-i}{j\choose i}f[j]\), 其中\(g[i]\)表示恰好有\(i\)对\(A>B\)的方案数。

时间复杂度\(O(n^2)\).

代码

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cassert>
#include<iostream>
#include<algorithm>
#define llong long long
using namespace std; inline int read()
{
int x=0; bool f=1; char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=0;
for(; isdigit(c);c=getchar()) x=(x<<3)+(x<<1)+(c^'0');
if(f) return x;
return -x;
} const int N = 2000;
const int P = 1e9+9;
int a[N+3],b[N+3];
llong dp[N+3][N+3];
llong f[N+3];
llong fact[N+3],finv[N+3];
int n,m; llong quickpow(llong x,llong y)
{
llong cur = x,ret = 1ll;
for(int i=0; y; i++)
{
if(y&(1ll<<i)) {y-=(1ll<<i); ret = ret*cur%P;}
cur = cur*cur%P;
}
return ret;
}
llong mulinv(llong x) {return quickpow(x,P-2);}
llong comb(llong x,llong y) {return x<0||y<0||x<y ? 0ll : fact[x]*finv[y]%P*finv[x-y]%P;} int main()
{
fact[0] = 1ll; for(int i=1; i<=N; i++) fact[i] = fact[i-1]*i%P;
finv[N] = quickpow(fact[N],P-2); for(int i=N-1; i>=0; i--) finv[i] = finv[i+1]*(i+1)%P;
scanf("%d%d",&n,&m);
if((n+m)&1) {printf("0"); return 0;}
m = (n+m)>>1;
for(int i=1; i<=n; i++) scanf("%d",&a[i]);
for(int i=1; i<=n; i++) scanf("%d",&b[i]);
sort(a+1,a+n+1); sort(b+1,b+n+1);
dp[0][0] = 1ll;
for(int i=1; i<=n; i++)
{
int t = lower_bound(b+1,b+n+1,a[i])-b-1;
for(int j=0; j<=i; j++)
{
dp[i][j] = dp[i-1][j];
if(j>0 && t-j+1>0) {dp[i][j] = (dp[i][j]+dp[i-1][j-1]*(t-j+1))%P;}
}
}
for(int i=0; i<=n; i++) f[i] = dp[n][i]*fact[n-i]%P;
llong ans = 0ll;
for(int i=m; i<=n; i++)
{
llong tmp = f[i]*comb(i,m);
if((i-m)&1) {ans = (ans-tmp+P)%P;}
else {ans = (ans+tmp)%P;}
}
printf("%lld\n",ans);
return 0;
}

BZOJ 3622 Luogu P4859 已经没有什么好害怕的了 (容斥原理、DP)的更多相关文章

  1. P4859 已经没有什么好害怕的了(dp+二项式反演)

    P4859 已经没有什么好害怕的了 啥是二项式反演(转) 如果你看不太懂二项式反演(比如我) 那么只需要记住:对于某两个$g(i),f(i)$ ---------------------------- ...

  2. BZOJ 3622: 已经没有什么好害怕的了 [容斥原理 DP]

    3622: 已经没有什么好害怕的了 题意:和我签订契约,成为魔法少女吧 真·题意:零食魔女夏洛特的结界里有糖果a和药片b各n个,两两配对,a>b的配对比b>a的配对多k个学姐就可能获胜,求 ...

  3. luogu P4859 已经没有什么好害怕的了

    嘟嘟嘟 题中给的\(k\)有点别扭,我们转换成\(a > b\)的对数是多少,这个用二元一次方程解出来是\(\frac{n + k}{2}\). 然后考虑dp,令\(dp[i][j]\)表示前\ ...

  4. BZOJ 2152 / Luogu P2634 [国家集训队]聪聪可可 (点分治/树形DP)

    题意 一棵树,给定边权,求满足两点之间的路径上权值和为3的倍数的点对数量. 分析 点分治板题,对每个重心求子树下面的到根的距离模3分别为0,1,2的点的个数就行了. O(3nlogn)O(3nlogn ...

  5. bzoj 3622 DP + 容斥

    LINK 题意:给出n,k,有a,b两种值,a和b间互相配对,求$a>b$的配对组数-b>a的配对组数恰好等于k的情况有多少种. 思路:粗看会想这是道容斥组合题,但关键在于如何得到每个a[ ...

  6. BZOJ 3052/Luogu P4074 [wc2013]糖果公园 (树上带修莫队)

    题面 中文题面,难得解释了 BZOJ传送门 Luogu传送门 分析 树上带修莫队板子题... 开始没给分块大小赋初值T了好一会... CODE #include <bits/stdc++.h&g ...

  7. BZOJ 3931 / Luogu P3171 [CQOI2015]网络吞吐量 (最大流板题)

    题面 中文题目,不解释: BZOJ传送门 Luogu传送门 分析 这题建图是显然的,拆点后iii和i′i'i′连容量为吞吐量的边,根据题目要求,111和nnn的吞吐量看作∞\infty∞. 然后用di ...

  8. BZOJ 3894 / Luogu P4313 文理分科 (拆点最小割)

    题面 中文题面- BZOJ 传送门 Luogu 传送门 分析 这道题类似于BZOJ 3774 最优选择,然后这里有一篇博客写的很好- Today_Blue_Rainbow's Blog 应该看懂了吧- ...

  9. BZOJ 2039 / Luogu P1791 [2009国家集训队]employ人员雇佣 (最小割)

    题面 BZOJ传送门 Luogu传送门 分析 考虑如何最小割建图,因为这仍然是二元关系,我们可以通过解方程来确定怎么建图,具体参考论文 <<浅析一类最小割问题 湖南师大附中 彭天翼> ...

随机推荐

  1. Threadlocal线程本地变量理解

    转载:https://www.cnblogs.com/chengxiao/p/6152824.html 总结: 作用:ThreadLocal 线程本地变量,可用于分布式项目的日志追踪 用法:在切面中生 ...

  2. 加快ALTER TABLE 操作速度

    mysql的alter table操作的性能对于大表来说是个大问题.mysql大部分修改表结构操作的方法都是用新的结构创建一个 新表,从旧表中查出数据插入新表,然后在删除旧表.这样的操作很耗费时间,而 ...

  3. EJB通过注解方式注入并使用其它EJB或者服务、配置JBoss数据源

    版权声明:本文为博主原创文章,转载请注明出处. https://blog.csdn.net/Jerome_s/article/details/37103171 通过注解方式注入并使用其他EJB或者服务 ...

  4. 稀疏矩阵三元组快速转置(转poklau123写的很清楚)

    关于稀疏矩阵的快速转置法,首先得明白其是通过对三元表进行转置.如果误以为是对矩阵进行转置,毫无疑问就算你想破脑袋也想不出个所以然,别陷入死胡同了! 对于一个三元表,行为i,列为j,值为v.需将其i与j ...

  5. django自带登录认证与登录自动跳转

    # 导入django自带模块 from django.contrib.auth import authenticate, login, logout # 使用authenticate进行认证,使用lo ...

  6. AWS In Action

    Core Services of AWS Elastic Cloud Compute(EC2) Simple Storage Service(S3) Relational Database Servi ...

  7. 10 Scrapy框架持久化存储

    一.基于终端指令的持久化存储 保证parse方法中有可迭代类型对象(通常为列表or字典)的返回,该返回值可以通过终端指令的形式写入指定格式的文件中进行持久化操作. 执行输出指定格式进行存储:将爬取到的 ...

  8. openlayers之地图截图

    方法1 //this.map._this为初始化地图对象 this.map._this.once('postcompose', function (event) { var canvas = even ...

  9. Python的__hash__函数和__eq__函数

    Python的__hash__函数和__eq__函数 可哈希的集合(hashed collections),需要集合的元素实现了__eq__和__hash__,而这两个方法可以作一个形象的比喻: 哈希 ...

  10. (转)java并发编程:CopyOnWriteArrayList

    原文链接:http://ifeve.com/java-copy-on-write/ Copy-On-Write简称COW,是一种用于程序设计中的优化策略.其基本思路是,从一开始大家都在共享同一个内容, ...