CSU 1552 Friends(二分图 + 米勒测试)
题目链接:http://acm.csu.edu.cn/csuoj/problemset/problem?pid=1552
Description
On an alien planet, every extraterrestrial is born with a number. If the sum of two numbers is a prime number, then two extraterrestrials can be friends. But every extraterrestrial can only has at most one friend. You are given all number of the extraterrestrials, please determining the maximum number of friend pair.
Input
There are several test cases.
Each test start with positive integers N(1 ≤ N ≤ 100), which means there are N extraterrestrials on the alien planet.
The following N lines, each line contains a positive integer pi ( 2 ≤ pi ≤10^18),indicate the i-th extraterrestrial is born with pi number.
The input will finish with the end of file.
Output
For each the case, your program will output maximum number of friend pair.
Sample Input
3
2
2
3 4
2
5
3
8
Sample Output
1
2
Hint
Source
题意:
给你n个数,两个数相加为素数的时候,就可以成为朋友,选过的数字不能重复选择。
题解:
2分图最大匹配问题,和米勒测试。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <string>
#include <vector>
#include <map>
#include <set>
#include <queue>
#include <sstream>
#include <algorithm>
using namespace std;
#define pb push_back
#define mp make_pair
#define ms(a, b) memset((a), (b), sizeof(a))
//#define LOCAL
#define eps 0.0000001
#define LNF (1<<60)
typedef long long LL;
const int inf = 0x3f3f3f3f;
const int maxn = +;
const int mod = 1e9+;
LL a[maxn];
bool Map[maxn][maxn], vis[maxn];
int lin[maxn];
LL big_rand(LL m)
{
LL x = rand();
x*=rand();
if(x<) x-=x;
return x%=m;
}
LL mod_mul(LL x, LL y, LL n)
{
if(x == || y == ) return ;
return (((x&)*y)%n+(mod_mul(x>>, y, n)<<)%n)%n;
}
LL mod_exp(LL x, LL y, LL n)
{
LL ret = ;
while(y){
if(y&) ret = mod_mul(ret, x, n);
x = mod_mul(x, x, n);
y >>= ;
}
return ret;
}
bool Miller_Rabbin(LL n)
{
LL i, j, x, m, k;
if(n==) return true;
if(n<|| !(n&)) return false;
m = n - ;k = ;
while(!(m&)) m >>= , k++;
for(i=;i<;i++){
x = big_rand(n-) + ;
x = mod_exp(x, m, n);
if(x == ) continue;
for(j = ;j<k;j++){
if(x==n-) break;
x = mod_mul(x, x, n);
}
if(j>=k) return false;
}
return true;
}
bool dfs(int x, int n){
for(int j = ;j<=n;j++){
if(Map[x][j]&&!vis[j]){
vis[j] = ;
if(lin[j]== || dfs(lin[j], n)){
lin[j] = x;
return ;
}
}
}
return ;
}
int main()
{
#ifdef LOCAL
freopen("input.txt", "r", stdin);
// freopen("output.txt", "w", stdout);
#endif // LOCAL int n;
while(~scanf("%d", &n)){
ms(Map, );
for(int i=;i<=n;i++) scanf("%lld", &a[i]);
for(int i=;i+<=n;i++){
for(int j=i+;j<=n;j++){
if(Miller_Rabbin(a[i]+a[j])){
Map[i][j] = Map[j][i] = ;
}
}
}
int ans = ;
ms(lin, );
for(int i=;i<=n;i++){
ms(vis, );
if(dfs(i, n)) ans++;
}
printf("%d\n", ans/);
}
return ;
}
将出2分图讲解,和米勒测试。未完待续。。XD
CSU 1552 Friends(二分图 + 米勒测试)的更多相关文章
- csu 1552: Friends 二分图 + Miller_Rabin
http://acm.csu.edu.cn/csuoj/problemset/problem?pid=1552 把那n个数写两次,分成相同的两堆,判断相加是质数的,连一条边,然后找最大匹配,ans = ...
- csu 1552(米勒拉宾素数测试+二分图匹配)
1552: Friends Time Limit: 3 Sec Memory Limit: 256 MBSubmit: 723 Solved: 198[Submit][Status][Web Bo ...
- Project Euler 41 Pandigital prime( 米勒测试 + 生成全排列 )
题意:如果一个n位数恰好使用了1至n每个数字各一次,我们就称其为全数字的.例如,2143就是一个4位全数字数,同时它恰好也是一个素数. 最大的全数字的素数是多少? 思路: 最大全排列素数可以从 n = ...
- Project Euler 27 Quadratic primes( 米勒测试 + 推导性质 )
题意: 欧拉发现了这个著名的二次多项式: f(n) = n2 + n + 41 对于连续的整数n从0到39,这个二次多项式生成了40个素数.然而,当n = 40时402 + 40 + 41 = 40( ...
- CSU 1552: Friends 图论匹配+超级大素数判定
1552: Friends Time Limit: 3 Sec Memory Limit: 256 MBSubmit: 163 Solved: 34[Submit][Status][Web Boa ...
- hdu2138 How many prime numbers 米勒测试
hdu2138 How many prime numbers #include <bits/stdc++.h> using namespace std; typedef long long ...
- 二分图最大匹配:匈牙利算法的python实现
二分图匹配是很常见的算法问题,一般用匈牙利算法解决二分图最大匹配问题,但是目前网上绝大多数都是C/C++实现版本,没有python版本,于是就用python实现了一下深度优先的匈牙利算法,本文使用的是 ...
- POJ Pseudoprime numbers( Miller-Rabin素数测试 )
链接:传送门 题意:题目给出费马小定理:Fermat's theorem states that for any prime number p and for any integer a > 1 ...
- 如何判断一个数是否为素数(zt)
怎么判断一个数是否为素数? 笨蛋的作法: bool IsPrime(unsigned n){ if (n<2) { //小于2的数即不是合数也不是素数 throw 0; ...
随机推荐
- oracle--多表联合查询sql92版
sql92学习 -查询员工姓名,工作,薪资,部门名称 sql的联合查询(多表查询) --1.sql92标准 ----笛卡尔积:一件事情的完成需要很多步骤,而不同的步骤有很多种方式,完成这件事情的所有方 ...
- Java第四周编程总结
第四周编程总结 1.写一个名为Rectangle的类表示矩形.其属性包括宽width.高height和颜色color,width和height都是double型的,而color则是String类型的. ...
- 配置Trunk接口
实验内容 本实验模拟某公司网络场景.公司规模较大,员工200余名,内部网络是-一个大的局域网.公司放置了多台接入交换机(如S1和S2)负责员工的网络接入.接入交换机之间通过汇聚交换机S3相连.公司通过 ...
- Oracle创建表 创建库 数据恢复
--建用户CREATE USER szs IDENTIFIED BY szs DEFAULT TABLESPACE NN_DATA01 TEMPORARY TABLESPACE temp;--用户赋权 ...
- 《剑指offer》面试题21 包含min函数的栈 Java版
(min函数的作用是返回栈内最小值) 首先这个栈要具有普通栈所具有的push()和pop()方法,那么内部一定包含一个Stack.至于还要能实现min函数,而且还是在O(1)时间复杂度内,我们不得不考 ...
- 使用内核LED框架搭建驱动 ——led_classdev_register
#include <linux/init.h> // __init __exit #include <linux/module.h> // module_init module ...
- BZOJ1185[HNOI2007] 最小矩形覆盖(旋转卡壳)
BZOJ1185[HNOI2007] 最小矩形覆盖 题面 给定一些点的坐标,要求求能够覆盖所有点的最小面积的矩形,输出所求矩形的面积和四个顶点的坐标 分析 首先可以先求凸包,因为覆盖了凸包上的顶点,凸 ...
- sql 时间函数大全
1. 当前系统日期.时间 select getdate() 2. dateadd 在向指定日期加上一段时间的基础上,返回新的 datetime 值 例如:向日期加上2天 se ...
- 入手node
一.安装node(查询使用npm) 二.安装淘宝镜像(查询使用cnpm,安装淘宝镜像之后下载速度会更快) 三.安装相关资料时,在预安装的文件夹使用: shift + 右键, 打开命令行窗口,进入终端
- linux NFS 的安装准备
关闭 iptables 和 selinux [root@allentuns ~]# service iptables stop [root@allentuns ~]# chkconfig iptabl ...