[SDOI2011]消防(贪心,图论,树的直径)
[SDOI2011]消防
题目描述
某个国家有n个城市,这n个城市中任意两个都连通且有唯一一条路径,每条连通两个城市的道路的长度为zi(zi<=1000)。
这个国家的人对火焰有超越宇宙的热情,所以这个国家最兴旺的行业是消防业。由于政府对国民的热情忍无可忍(大量的消防经费开销)可是却又无可奈何(总统竞选的国民支持率),所以只能想尽方法提高消防能力。
现在这个国家的经费足以在一条边长度和不超过s的路径(两端都是城市)上建立消防枢纽,为了尽量提高枢纽的利用率,要求其他所有城市到这条路径的距离的最大值最小。
你受命监管这个项目,你当然需要知道应该把枢纽建立在什么位置上。
输入输出格式
输入格式:
输入包含n行:
第1行,两个正整数n和s,中间用一个空格隔开。其中n为城市的个数,s为路径长度的上界。设结点编号以此为1,2,……,n。
从第2行到第n行,每行给出3个用空格隔开的正整数,依次表示每一条边的两个端点编号和长度。例如,“2 4 7”表示连接结点2与4的边的长度为7。
输出格式:
输出包含一个非负整数,即所有城市到选择的路径的最大值,当然这个最大值必须是所有方案中最小的。
输入输出样例
输入样例#1:
5 2
1 2 5
2 3 2
2 4 4
2 5 3
输出样例#1:
5
输入样例#2:
8 6
1 3 2
2 3 2
3 4 6
4 5 3
4 6 4
4 7 2
7 8 3
输出样例#2:
5
说明
【数据规模和约定】
对于20%的数据,n<=300。
对于50%的数据,n<=3000。
对于100%的数据,n<=300000,边长小等于1000。
貌似自己的思路和别人的不太一样啊???
本来只打算拿50%的数据的,结果A?!
这道题先求出树的直径,然后我们从底部开始往上枚举,很显然的一个贪心:固定了一个端点之后,另一端点越远越好。所以我们直接枚举端点,找到它的另一端。
这时候我通过LCA\(O(1)\)来计算距离,就可以把此情况的最大距离用\(O(n)\)处理得到。
加上前面的贪心思想,就愉快地AC了???
#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
int read()
{
int x=0,w=1;char ch=getchar();
while(ch>'9'||ch<'0') {if(ch=='-')w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return x*w;
}
int n,s,x,y,z,root,t,l,r,cnt,ans=2000000000,sum;
int head[300010],dis[300010],f[300010][20],deep[300010],vis[300010];
struct node{
int to,next,v;
}edge[600010];
void add(int x,int y,int z)
{
cnt++;
edge[cnt].to=y;
edge[cnt].next=head[x];
edge[cnt].v=z;
head[x]=cnt;
}
int LCA(int x,int y)
{
if(deep[x]<deep[y]) swap(x,y);
for(int i=19;i>=0;i--)
{
if(deep[f[x][i]]>=deep[y]) x=f[x][i];
}
if(x==y) return x;
for(int i=19;i>=0;i--)
{
if(f[x][i]!=f[y][i])
x=f[x][i],y=f[y][i];
}
return f[x][0];
}
void init()
{
for(int i=1;i<=9;i++)
{
for(int j=1;j<=n;j++)
{
f[j][i]=f[f[j][i-1]][i-1];
}
}
}
void dfs1(int k,int fa)
{
for(int i=head[k];i;i=edge[i].next)
{
int v=edge[i].to;
if(v==fa) continue;
dis[v]=dis[k]+edge[i].v;
dfs1(v,k);
}
}
void dfs2(int k,int fa)
{
for(int i=head[k];i;i=edge[i].next)
{
int v=edge[i].to;
if(v==fa) continue;
dis[v]=dis[k]+edge[i].v;f[v][0]=k;deep[v]=deep[k]+1;
dfs2(v,k);
}
}
int main()
{
n=read();s=read();
for(int i=1;i<n;i++)
{
x=read();y=read();z=read();
add(x,y,z);add(y,x,z);
}
dfs1(1,0);
for(int i=1;i<=n;i++)
{
if(!root||dis[i]>dis[root]) root=i;
}
memset(dis,0,sizeof(dis));
deep[root]=1;dfs2(root,0);
for(int i=1;i<=n;i++)
{
if(!t||dis[i]>dis[t]) t=i;
}
init();
l=t;r=t;vis[t]=1;
while(l!=0)
{
sum=0;
if(dis[r]-dis[l]>s)
{
vis[r]=0;r=f[r][0];vis[r]=1;
}
else
{
while(dis[r]-dis[l]<=s&&l!=0) {l=f[l][0];vis[l]=1;}
int rlca;
for(int i=1;i<=n;i++)
{
if(vis[i]) continue;
int lca1=LCA(l,i),lca2=LCA(r,i);
if(deep[lca1]>deep[lca2]) rlca=lca1;
else rlca=lca2;
if(deep[rlca]<deep[l])
{
sum=max(sum,dis[l]+dis[i]-2*dis[rlca]);
}
else sum=max(sum,dis[i]-dis[rlca]);
}
ans=min(ans,sum);
l=f[l][0];vis[l]=1;
}
}
cout<<ans;
}
[SDOI2011]消防(贪心,图论,树的直径)的更多相关文章
- 图论--树的直径--DFS+树形DP模板
#include <iostream> #include <cstring> using namespace std; //maxv:源点能到的最远点,maxdis:最远点对应 ...
- 【SDOI2011 第2轮 DAY1】消防 -[树的直径+树链剖分][解题报告]
[SDOI2011 第2轮 DAY1]消防 题面: SDOI2011 第2轮 DAY1]消防 时间限制 : 20000 MS 空间限制 : 565536 KB 问题描述 时限\(2s\) 某个国家有\ ...
- bzoj 2282 [Sdoi2011]消防(树的直径,二分)
Description 某个国家有n个城市,这n个城市中任意两个都连通且有唯一一条路径,每条连通两个城市的道路的长度为zi(zi<=1000). 这个国家的人对火焰有超越宇宙的热情,所以这个国家 ...
- [SDOI2011]消防(树的直径)
[SDOI2011]消防 题目描述 某个国家有n个城市,这n个城市中任意两个都连通且有唯一一条路径,每条连通两个城市的道路的长度为zi(zi<=1000). 这个国家的人对火焰有超越宇宙的热情, ...
- 与图论的邂逅01:树的直径&基环树&单调队列
树的直径 定义:树中最远的两个节点之间的距离被称为树的直径. 怎么求呢?有两种官方的算法(不要问官方指谁我也不晓得): 1.两次搜索.首先任选一个点,从它开始搜索,找到离它最远的节点x.然后从x开始 ...
- Sonya and Ice Cream CodeForces - 1004E 树的直径, 贪心
题目链接 set维护最小值贪心, 刚开始用树的直径+单调队列没调出来... #include <iostream>#include <cstdio> #include < ...
- [Bzoj2282]消防(二分答案+树的直径)
Description 某个国家有n个城市,这n个城市中任意两个都连通且有唯一一条路径,每条连通两个城市的道路的长度为zi(zi<=1000). 这个国家的人对火焰有超越宇宙的热情,所以这个国家 ...
- [NOI2003]逃学的小孩 (贪心+树的直径+暴力枚举)
Input 第一行是两个整数N(3 <= N <= 200000)和M,分别表示居住点总数和街道总数.以下M行,每行给出一条街道的信息.第i+1行包含整数Ui.Vi.Ti(1<=Ui ...
- 牡丹江.2014B(图论,树的直径)
B - Building Fire Stations Time Limit:5000MS Memory Limit:131072KB 64bit IO Format:%lld & ...
随机推荐
- 20180912-Java实例02
Java 实例 – 删除字符串中的一个字符 以下实例中我们通过字符串函数 substring() 函数来删除字符串中的一个字符,我们将功能封装在 removeCharAt 函数中. // Main.j ...
- maven入门问题解决
记录入门使用maven的问题和解决方法: 一.用mvn clean compile编译报错/ 或者在IDE中编译时,Problem视图显示错误:无法从maven服务器或者私有服务器或者某个网站中中下载 ...
- 高级软件测试技术(测试管理工具实践day2)
今天在紧张的学习之余,我们小组选定了bugzilla,并且打算在今天晚上刚进行下载安装. 在安装bugzilla需要的软件有MySQL数据库软件,activeperl软件,bugzilla安装包,II ...
- Matlab中imfilter()函数的用法
Matlab中imfilter()函数的用法 功能:对任意类型数组或多维图像进行滤波.用法:B = imfilter(A,H) B = imfilter(A,H,option1,option2,... ...
- VMware 虚拟机的虚拟磁盘编程知识点扫盲之二
目录 目录 前文列表 VDDK 安装 VDDK VixDiskLib VADP 前文列表 VMware 虚拟机的虚拟磁盘编程知识点扫盲之一 VDDK 摘自官方文档:The Virtual Disk D ...
- requests模块(请求接口)
下面分别是get,post,入参json,添加cookie,添加header,上传/下载文件 的接口请求举例: import requests #导入模块 #1.发get请求 url = 'htt ...
- Jmeter之事物控制器
在我们需要统计一组取样器的统计数据,可以将这一组取样器放置在事物控制器下,进行统计. 一.界面显示 二.配置说明 1.名称:标识 2.注释:备注 3.Generate parent sample: 不 ...
- Linux QQ全新回归
福音! 2019年10月24日,腾讯官方发布QQ Linux 2.0.0 Beta版本,告示着Linux QQ的回归. 2008年,腾讯曾推出QQ for Linux,但2009年之后就再没有更新过, ...
- 浅谈vue父子组件之间的传值
前言:本章主要说下父子组件的传值,为商品列表组件之间的传值做一个基础预热.Github:https://github.com/Ewall1106/mall(请选择分支chapter23) 1.父组件向 ...
- 解决django项目在ubuntu系统上无法安装mysqlclient
首先我的项目是django2.0,python环境是3.5. 我们在本地开发完django项目了,在本地运行是成功的,然后我们把django项目放到服务器上,运行的时候就出错了. 如图: 我们都知道, ...