题意:平面上有N个点. 求出所有以这N个点为顶点的三角形的面积和

N<=3000 N个点的坐标,其值在[0,10000]

思路:按从左到右的预处理点排序

每次枚举最左点作为原点,把叉积从大到小排序

面积用叉积算,因为每次以最左的点作为原点,叉积一定都大于0

2S=xi*yj-yi*xj,xi和yi已经固定,只要维护xj和yj的后缀和就好

 #include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef unsigned int uint;
typedef unsigned long long ull;
typedef pair<int,int> PII;
typedef pair<ll,ll> Pll;
typedef vector<int> VI;
typedef vector<PII> VII;
//typedef pair<ll,ll>P;
#define N 100100
#define M 2000010
#define fi first
#define se second
#define MP make_pair
#define pb push_back
#define pi acos(-1)
#define mem(a,b) memset(a,b,sizeof(a))
#define rep(i,a,b) for(int i=(int)a;i<=(int)b;i++)
#define per(i,a,b) for(int i=(int)a;i>=(int)b;i--)
#define lowbit(x) x&(-x)
#define Rand (rand()*(1<<16)+rand())
#define id(x) ((x)<=B?(x):m-n/(x)+1)
#define ls p<<1
#define rs p<<1|1 const ll MOD=1e9+,inv2=(MOD+)/;
double eps=1e-;
int INF=1e9;
int dx[]={-,,,};
int dy[]={,,-,}; struct P
{
ll x,y;
}p[N],t[N]; int n; ll operator*(P a,P b)
{
return a.x*b.y-a.y*b.x;
} ll operator<(P a,P b)
{
return a.y<b.y||(a.y==b.y&&a.x<b.x);
} bool cmp(P a,P b)
{
return a*b>;
} ll read()
{
ll v=,f=;
char c=getchar();
while(c<||<c) {if(c=='-') f=-; c=getchar();}
while(<=c&&c<=) v=(v<<)+v+v+c-,c=getchar();
return v*f;
} void solve()
{
sort(p+,p+n+);
ll ans=;
rep(i,,n-)
{
int m=;
ll sx=,sy=;
rep(j,i+,n)
{
m++;
t[m].x=p[j].x-p[i].x;
t[m].y=p[j].y-p[i].y;
}
sort(t+,t+m+,cmp);
rep(j,,m)
{
sx+=t[j].x;
sy+=t[j].y;
}
rep(j,,m)
{
sx-=t[j].x;
sy-=t[j].y;
ans+=t[j].x*sy-t[j].y*sx;
}
}
if(ans%==) printf("%lld.5\n",ans/);
else printf("%lld.0\n",ans/);
} int main()
{
n=read();
rep(i,,n) p[i].x=read(),p[i].y=read();
solve();
return ;
}

【BZOJ1132】Tro(叉积)的更多相关文章

  1. BZOJ1132: [POI2008]Tro(叉积 排序)

    题意 世上最良心题目描述qwq 平面上有N个点. 求出所有以这N个点为顶点的三角形的面积和 N<=3000 Sol 直接模拟是$n^3$的. 考虑先枚举一个$i$,那么我们要算的就是$\sum_ ...

  2. 【BZOJ1132】【POI2008】Tro 计算几何 叉积求面积

    链接: #include <stdio.h> int main() { puts("转载请注明出处[辗转山河弋流歌 by 空灰冰魂]谢谢"); puts("网 ...

  3. 【BZOJ1132】[POI2008]Tro 几何

    [BZOJ1132][POI2008]Tro Description 平面上有N个点. 求出所有以这N个点为顶点的三角形的面积和 N<=3000 Input 第一行给出数字N,N在[3,3000 ...

  4. BZOJ1132: [POI2008]Tro

    1132: [POI2008]Tro Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 815  Solved: 211[Submit][Status] ...

  5. bzoj1132[POI2008]Tro 计算几何

    1132: [POI2008]Tro Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 1722  Solved: 575[Submit][Status] ...

  6. 【计算几何】【极角序】【前缀和】bzoj1132 [POI2008]Tro

    把点按纵坐标排序,依次枚举,把它作为原点,然后把之后的点极角排序,把叉积的公式稍微化简一下,处理个后缀和统计答案. #include<cstdio> #include<cmath&g ...

  7. 【bzoj1132】[POI2008]Tro 计算几何

    题目描述 平面上有N个点. 求出所有以这N个点为顶点的三角形的面积和 N<=3000 输入 第一行给出数字N,N在[3,3000] 下面N行给出N个点的坐标,其值在[0,10000] 输出 保留 ...

  8. BZOJ 1132 Tro

    Tro [问题描述] 平面上有N个点. 求出所有以这N个点为顶点的三角形的面积和 N<=3000 [输入格式] 第一行给出数字N,N在[3,3000] 下面N行给出N个点的坐标,其值在[0,10 ...

  9. ACM/ICPC 之 计算几何入门-叉积-to left test(POJ2318-POJ2398)

    POJ2318 本题需要运用to left test不断判断点处于哪个分区,并统计分区的点个数(保证点不在边界和界外),用来做叉积入门题很合适 //计算几何-叉积入门题 //Time:157Ms Me ...

随机推荐

  1. 使用 java.util.Properties 读取配置文件中的参数

    配置文件格式 如下的配置参数格式都支持: Key = ValueKey = Key:ValueKey :Value 用法 getProperty方法的返回值是String类型. //读取配置文件 Fi ...

  2. “EndExecuteNonQuery”方法没有任何重载采用“0”个参数

    EndExecuteNonQuery需要参数IAsyncResult asyncResult myCmd.ExecuteNonQuery();//执行 ExecuteNonQuery 返回受影响行数

  3. [转帖]是时候深入了解Linux的系统结构

    是时候深入了解Linux的系统结构   http://os.51cto.com/art/201905/596011.htm linux的体系结果 其实自己也知道 linus 做了一个 kernel 大 ...

  4. java.io.IOException: Cannot run program "/opt/jdk1.8.0_191/bin/java" (in directory "/var/lib/jenkins/workspace/xinguan"): error=2, No such file or directory

    测试jenkins构建,报错如下 Parsing POMs Established TCP socket on 44463 [xinguan] $ /opt/jdk1.8.0_191/bin/java ...

  5. JavaDoc注释

    标签 说明 JDK 1.1 doclet 标准doclet 标签类型 @author 作者 作者标识 √ √ 包. 类.接口 @version 版本号 版本号 √ √ 包. 类.接口 @param 参 ...

  6. Eclipse连接SQL Server 2008数据库

    一.准备材料 要能够使用数据库就要有相应的JDBC,所以我们要去Microsoft官网下载 https://www.microsoft.com/zh-cn/download/details.aspx? ...

  7. 极*Java速成教程 - (4)

    Java语言基础 多态 多态是面向对象的一大重要特性,如果说封装是隐藏一个类怎么做,继承是确定一系列的类做什么,那多态就是通过手段去分离做什么和怎么做. 向上转型与收窄 在开发者将一类事物封装成类以后 ...

  8. HDU - 1845 Jimmy’s Assignment (二分匹配)

    Description Jimmy is studying Advanced Graph Algorithms at his university. His most recent assignmen ...

  9. 使用 VS Code 搭建 TypeScript 开发环境

    使用 VS Code 搭建 TypeScript 开发环境 TypeScript 是 JavaScript 的超集,TypeScript 只是增强了 JavaScript 而非改变了 JavaScri ...

  10. git flow 基础了解

    git flow 软件开发中的一个分支管理流程.利用它可以让软件开发有条不紊的进行,先对它进行一个大概的了解吧,后面工作了实际用到了在深入研究一下. 先看下它的工作流程: 这张图看着一脸茫然,先放在这 ...