[BZOJ3527][ZJOI2014]力:FFT
分析
整理得下式:
\]
假设\(n=5\),考虑这两个数组:
\(a:q_1 \quad q_2 \quad q_3 \quad q_4 \quad q_5\)
\(b:-\frac{1}{16} \quad -\frac{1}{9} \quad -\frac{1}{4} \quad -\frac{1}{1} \quad 0 \quad \frac{1}{1} \quad \frac{1}{4} \quad \frac{1}{9} \quad \frac{1}{16}\)
容易发现\(E\)数组是把\(a,b\)数组看做多项式各项系数作卷积后一些项的系数。
FFT即可。
代码
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <cctype>
#include <algorithm>
#include <complex>
#define rin(i,a,b) for(int i=(a);i<=(b);i++)
#define rec(i,a,b) for(int i=(a);i>=(b);i--)
#define trav(i,a) for(int i=head[(a)];i;i=e[i].nxt)
using std::cin;
using std::cout;
using std::endl;
typedef long long LL;
typedef std::complex<double> Complex;
const int MAXN=100005;
const double pi=3.14159265358979;
int n,m,len;
int rev[MAXN<<3];
Complex a[MAXN<<3],b[MAXN<<3];
inline void fft(Complex *c,int dft){
rin(i,0,n-1) if(i<rev[i])
std::swap(c[i],c[rev[i]]);
for(int mid=1;mid<n;mid<<=1){
int r=(mid<<1);
Complex u=(Complex){cos(pi/mid),dft*sin(pi/mid)};
for(int l=0;l<n;l+=r){
Complex v=1;
for(int i=0;i<mid;i++,v*=u){
Complex x=c[l+i],y=v*c[l+mid+i];
c[l+i]=x+y;
c[l+mid+i]=x-y;
}
}
}
if(dft==-1) rin(i,0,n-1)
c[i]/=n;
}
int main(){
scanf("%d",&n);
n--;
rin(i,0,n){
double x;
scanf("%lf",&x);
a[i]=x;
}
m=(n<<1);
rin(i,0,m){
if(i<n) b[i]=-1.0/(n-i)/(n-i);
else if(i==n) b[i]=0;
else b[i]=1.0/(i-n)/(i-n);
}
int nn=n;
for(m+=n,n=1;n<=m;n<<=1) len++;
rin(i,1,n-1) rev[i]=((rev[i>>1]>>1)|((i&1)<<(len-1)));
fft(a,1);
fft(b,1);
rin(i,0,n-1) a[i]*=b[i];
fft(a,-1);
n=nn;
rin(i,n,n+n) printf("%.10lf\n",a[i].real());
return 0;
}
[BZOJ3527][ZJOI2014]力:FFT的更多相关文章
- bzoj3527: [Zjoi2014]力 fft
bzoj3527: [Zjoi2014]力 fft 链接 bzoj 思路 但是我们求得是 \(\sum\limits _{i<j} \frac{q_i}{(i-j)^2}-\sum_{i> ...
- [BZOJ3527][ZJOI2014]力 FFT+数学
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3527 首先卷积的形式是$h(i)=\sum_{i=0}^jf(i)g(i-j)$,如果我们 ...
- BZOJ3527[Zjoi2014]力——FFT
题目描述 给出n个数qi,给出Fj的定义如下: 令Ei=Fi/qi,求Ei. 输入 第一行一个整数n. 接下来n行每行输入一个数,第i行表示qi. n≤100000,0<qi<100000 ...
- [bzoj3527][Zjoi2014]力_FFT
力 bzoj-3527 Zjoi-2014 题目大意:给定长度为$n$的$q$序列,定义$F_i=\sum\limits_{i<j}\frac{q_iq_j}{(i-j)^2}-\sum\lim ...
- 【BZOJ-3527】力 FFT
3527: [Zjoi2014]力 Time Limit: 30 Sec Memory Limit: 256 MBSec Special JudgeSubmit: 1544 Solved: 89 ...
- 【BZOJ】3527: [Zjoi2014]力 FFT
[参考]「ZJOI2014」力 - FFT by menci [算法]FFT处理卷积 [题解]将式子代入后,化为Ej=Aj-Bj. Aj=Σqi*[1/(i-j)^2],i=1~j-1. 令f(i)= ...
- P3338 [ZJOI2014]力(FFT)
题目 P3338 [ZJOI2014]力 做法 普通卷积形式为:\(c_k=\sum\limits_{i=1}^ka_ib_{k-i}\) 其实一般我们都是用\(i=0\)开始的,但这题比较特殊,忽略 ...
- 【bzoj3527】[Zjoi2014]力 FFT
2016-06-01 21:36:44 题目:http://www.lydsy.com/JudgeOnline/problem.php?id=3527 我就是一个大傻叉 微笑脸 #include&l ...
- bzoj3527: [Zjoi2014]力 卷积+FFT
先写个简要题解:本来去桂林前就想速成一下FFT的,结果一直没有速成成功,然后这几天断断续续看了下,感觉可以写一个简单一点的题了,于是就拿这个题来写,之前式子看着别人的题解都不太推的对,然后早上6点多推 ...
- 2019.02.28 bzoj3527: [Zjoi2014]力(fft)
传送门 fftfftfft菜题. 题意简述:给一个数列aia_iai,对于i=1→ni=1\rightarrow ni=1→n求出ansi=∑i<jai(i−j)2−∑i>jai(i−j ...
随机推荐
- 爬取LeetCode题目——如何发送GraphQL Query获取数据
前言 GraphQL 是一种用于 API 的查询语言,是由 Facebook 开源的一种用于提供数据查询服务的抽象框架.在服务端 API 开发中,很多时候定义一个接口返回的数据相对固定,因此要获得 ...
- Spring Boot 为什么这么火?(二)
Spring Boot 的火 网上连载了 Spring Boot 系列文章,没想到这一开始便与 Spring Boot 深度结缘. 技术社区 Spring Boot 的文章越来越多:Spring Bo ...
- [Git] 019 merge 命令的补充
回顾:[Git] 017 加一条分支,享双倍快乐 的 "2.3" 1. "Fast-forward" "Git" 在合并分支时会尽可能地使用 ...
- Object.create()的使用方法
Object.create()的使用方法:https://blog.csdn.net/wang252949/article/details/79109437
- Linux 创建与删除(5)
相对于Windows下的右键新建文件与删除,我更喜爱Linux下的命令式创建与删除,真的方便.不过Windows下也可以借助工具来实现,比如git bash.cmder等等终端工具. 创建文件 新建文 ...
- 逆序单词 HIhoCoder 1366 字典树
逆序单词 HIhoCoder 1366 字典序 题意 在英文中有很多逆序的单词,比如dog和god,evil和live等等. 现在给出一份包含N个单词的单词表,其中每个单词只出现一次,请你找出其中有多 ...
- angularJS(二):作用域$scope、控制器、过滤器
app.controller创建控制器 一.作用域 Scope(作用域) 是应用在 HTML (视图) 和 JavaScript (控制器)之间的纽带. Scope 是一个对象,有可用的方法和属性. ...
- 手写spring事务框架, 揭秘AOP实现原理。
AOP面向切面编程:主要是通过切面类来提高代码的复用,降低业务代码的耦合性,从而提高开发效率.主要的功能是:日志记录,性能统计,安全控制,事务处理,异常处理等等. AOP实现原理:aop是通过cgli ...
- Xcode 运行时异常
一:unable to boot the ios simulator:模拟器异常 1.在添加了新的xcode版本调试包时,出现旧版模拟器不支持的情况,关闭旧版模拟器,重新运行 二:Could not ...
- MySQL索引优化与分析(重要)
建表SQL CREATE TABLE staffs ( id INT PRIMARY KEY AUTO_INCREMENT, NAME VARCHAR (24) NULL DEFAULT '' COM ...