期望=Σ概率*权值

1. Codeforces 148-D

考虑用$f[i][j]$表示princess进行操作时[还剩有i只w,j只b]这一状态的存在概率。这一概率要存在,之前draw out的一定是b,跳出的可能是w可能是b。$ans=\sum\limits f[i][j]*i/(i+j)$

需要注意的是操作时有先后的。由于我们只关心princess,那么上一轮的顺序必须满足princess, dragon, scared mice。

由于i,j都是整数,在处理概率的时候要*1.0或(double)

2. hdu4576

二维DP滚动数组优化一下就好了。

值得注意的是w可能超过n。环形的取模问题。

3. poj2096

可以简化一下这个问题。有n个盒子,每天随机往一个盒子里放东西,问期望几天每个盒子里都有东西。

$f_i=f_i*\dfrac{i}{n}+f_{i+1}*\dfrac{n-i}{n}$

移项可得转移方程。那么本题类似。

Dilute巨爷向我解释了为什么不能正推——因为如果令f[i][j]表示出现在j个软件里出现i种病毒的期望天数,然而这个状态时可以持续的,也就是说可能好几天持续是这个状态。那么期望天数就没有意义了。orz

「概率,期望DP」总结的更多相关文章

  1. 【loj6191】「美团 CodeM 复赛」配对游戏 概率期望dp

    题目描述 n次向一个栈中加入0或1中随机1个,如果一次加入0时栈顶元素为1,则将这两个元素弹栈.问最终栈中元素个数的期望是多少. 输入 一行一个正整数 n . 输出 一行一个实数,表示期望剩下的人数, ...

  2. 【BZOJ-1419】Red is good 概率期望DP

    1419: Red is good Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 660  Solved: 257[Submit][Status][Di ...

  3. 【bzoj4832】[Lydsy2017年4月月赛]抵制克苏恩 概率期望dp

    题目描述 你分别有a.b.c个血量为1.2.3的奴隶主,假设英雄血量无限,问:如果对面下出一个K点攻击力的克苏恩,你的英雄期望会受到到多少伤害. 输入 输入包含多局游戏. 第一行包含一个整数 T (T ...

  4. Codeforces - 1264C - Beautiful Mirrors with queries - 概率期望dp

    一道挺难的概率期望dp,花了很长时间才学会div2的E怎么做,但这道题是另一种设法. https://codeforces.com/contest/1264/problem/C 要设为 \(dp_i\ ...

  5. 「状压DP」「暴力搜索」排列perm

    「状压DP」「暴力搜索」排列 题目描述: 题目描述 给一个数字串 s 和正整数 d, 统计 sss 有多少种不同的排列能被 d 整除(可以有前导 0).例如 123434 有 90 种排列能被 2 整 ...

  6. 概率期望dp

    对于概率dp,我一直都弄得不是特别明白,虽然以前也有为了考试去突击过,但是终究还是掌握得不是很好,所以决定再去学习一遍,把重要的东西记录下来. 1.hdu4405 Description 在一个 \( ...

  7. Codeforces 908 D.New Year and Arbitrary Arrangement (概率&期望DP)

    题目链接:New Year and Arbitrary Arrangement 题意: 有一个ab字符串,初始为空. 用Pa/(Pa+Pb)的概率在末尾添加字母a,有 Pb/(Pa+Pb)的概率在末尾 ...

  8. [BZOJ4832]抵制克苏恩(概率期望DP)

    方法一:倒推,最常规的期望DP.f[i][a][b][c]表示还要再攻击k次,目前三种随从个数分别为a,b,c的期望攻击英雄次数,直接转移即可. #include<cstdio> #inc ...

  9. LightOJ 1030 Discovering Gold (概率/期望DP)

    题目链接:LightOJ - 1030 Description You are in a cave, a long cave! The cave can be represented by a \(1 ...

随机推荐

  1. Web UI自动化测试基础——元素定位(一)

    本篇文章整理了元素定位的基础知识——单个元素定位方式. 一.单个元素定位方式简介 1. find_element_by_id 通过元素的id属性进行定位.以百度首页为例,首先进入https://www ...

  2. 问题记录 | deepin15.10重装nvidia驱动及cuda

    问题描述: nvidia-smi也有显示,显卡驱动是在的,而且nvcc显示出来的cuda版本9.0也没错,不是9.1.不知道问题所在,索性重装全部. sudo tee /proc/acpi/bbswi ...

  3. 【Qt开发】【Linux开发】Qt程序在嵌入式设备(arm) 上运行,鼠标擦除界面的解决方案

    笔者最近想在arm开发板上,开发一个应用程序,经过网上查询发现qt作为跨平台开发软件很不错,于是便选择了qt开发,笔者的qt版本是4.8.6的.由于arm的主频太低,在arm上进行开发编译,效率会大大 ...

  4. adb 连接 mumu 模拟器

    [win版]adb connect 127.0.0.1:7555adb shell [mac版] adb kill-server && adb server && ad ...

  5. python 三元表达式

    python 三元表达式(ternary expression)  把 if-else块 写到一行或者一个表达式中 并且产生一个值 value = true if condition else fal ...

  6. Java——LinkedList使用Demo

    package list; import java.util.Iterator; import java.util.LinkedList; public class LinkedListDemo { ...

  7. W3C标准定义的DOM由哪三部分组成

    DOM 定义了访问诸如 XML 和 XHTML 文档的标准.“W3C 文档对象模型(DOM)是一个使程序和脚本有能力动态地访问和更新文档的内容.结构以及样式的平台和语言中立的接口.”DOM 定义了所有 ...

  8. java学习day1

    一.常用的DOS命令 1.打开cmd 窗口键+r --> 输入cmd --> 确认 2.常用的dos命令 dir:列出当前目录下的所有文件及文件夹 md:创建一个新的目录 rd:删除目录 ...

  9. Skiing POJ 3037 很奇怪的最短路问题

    Skiing POJ 3037 很奇怪的最短路问题 题意 题意:你在一个R*C网格的左上角,现在问你从左上角走到右下角需要的最少时间.其中网格中的任意两点的时间花费可以计算出来. 解题思路 这个需要发 ...

  10. git学习指南

    近来学习Git,苦寻资料下发现廖雪峰老师的教程很好,在此推荐传送门 附每节总结,方便查阅 创建版本库 初始化一个Git仓库,使用git init命令. 添加文件到Git仓库,分两步: 使用命令git ...