题目链接

这题求[1,n],[1,m]gcd为k的对数。而且没有顺序。

设F(n)为公约数为n的组数个数 
f(n)为最大公约数为n的组数个数

然后在纸上手动验一下F(n)和f(n)的关系,直接套公式就好了。注意要删去重复的。

关于 莫比乌斯反演 的结论

ACdreamers大神的相关博客  莫比乌斯反演   莫比乌斯反演与最大公约数

#include<bits/stdc++.h>
using namespace std;
typedef long long LL; const int maxn=1e6; int prime[maxn+];
bool check[maxn+];
int mu[maxn+]; void init()
{
mu[]=;
int tot=;
for(int i=;i<=maxn;i++)
{
if(!check[i])
{
prime[tot++]=i;
mu[i]=-;
}
for(int j=;j<tot;j++)
{
if(i*prime[j]>maxn) break;
check[i*prime[j]]=true;
if(i%prime[j]==)
{
mu[i*prime[j]]=;
break;
}
else
{
mu[i*prime[j]]=-mu[i];
}
}
}
} int main()
{
int T;
int a,b,c,d,k;
init();
scanf("%d",&T);
for(int kase=;kase<=T;kase++)
{
scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
if(k==)
{
printf("Case %d: 0\n",kase);
continue;
}
b/=k;
d/=k;
if(b>d) swap(b,d);
LL ans=;
for(int i=;i<=b;i++)
ans+=(LL)mu[i]*(b/i)*(d/i);
LL t=;
for(int i=;i<=b;i++)
t+=(LL)mu[i]*(b/i)*(b/i);
ans-=t/;
printf("Case %d: %I64d\n",kase,ans);
}
}

hdu 1695: GCD 【莫比乌斯反演】的更多相关文章

  1. hdu 1695 GCD 莫比乌斯反演入门

    GCD 题意:输入5个数a,b,c,d,k;(a = c = 1, 0 < b,d,k <= 100000);问有多少对a <= p <= b, c <= q <= ...

  2. HDU 1695 GCD 莫比乌斯反演

    分析:简单的莫比乌斯反演 f[i]为k=i时的答案数 然后就很简单了 #include<iostream> #include<algorithm> #include<se ...

  3. hdu 1695 GCD 莫比乌斯

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  4. [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块)

    [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对. ...

  5. HDU 1695 GCD 欧拉函数+容斥定理 || 莫比乌斯反演

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  6. HDU 1695 GCD (莫比乌斯反演)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  7. HDU 1695 GCD (莫比乌斯反演模板)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submis ...

  8. D - GCD HDU - 1695 -模板-莫比乌斯容斥

    D - GCD HDU - 1695 思路: 都 除以 k 后转化为  1-b/k    1-d/k中找互质的对数,但是需要去重一下  (x,y)  (y,x) 这种情况. 这种情况出现 x  ,y ...

  9. ●HDU 1695 GCD

    题链: http://acm.hdu.edu.cn/showproblem.php?pid=1695 题解: 容斥. 莫比乌斯反演,入门题. 问题化简:求满足x∈(1~n)和y∈(1~m),且gcd( ...

随机推荐

  1. (转)原理到实现 | K8S 存储之 NFS

    转:https://mp.weixin.qq.com/s/Mrr1Rnl_594Gyyn9fHekjw 1NFS介绍 NFS是Network File System的简写,即网络文件系统,NFS是Fr ...

  2. UVA10870 Recurrences (矩阵快速幂及构造方法详解)

    题意: F(n) =  a1 * F(n-1) + a2 * F(n-2)+ ···· + ad * F(n-d). 求给你的n . 很明显这是一道矩阵快速幂的题目. 题解: [Fn-1, Fn-2, ...

  3. scau 1079 三角形(暴力)

    </pre>1079 三角形</h1></center><p align="center" style="margin-top: ...

  4. 移动端rem布局屏幕适配插件(放js中便可使用)

    /* doc:不用管:document对象 win:不用管:window对象 design:注意:设计稿的尺寸/物理像素*/ (function (doc, win,design) {// alert ...

  5. ubuntu python3相关

    安装pip3 sudo apt install python3-pipsudo apt-get install python3-virtualenv sudo pip3 install virtual ...

  6. 牛客提高D6t2 破碎的序列

    分析 我们不难发现对于偶数的情况只要相邻两个数不相等即可 而对于奇数的情况只要中间恰好隔一个数的两个数不相等即可 于是我们又dp[i][0/1]表示考虑到第i位,这一位和它后面离它最近的一个确定的数是 ...

  7. Selenium WebDriver Log4j打印执行日志

    在自动化测试脚本的执行过程中,使用log4j在日志文件中打印执行日志,用于监控和后续调试脚本. Log4j.xml 文件 <log4j:configuration xmlns:log4j=&qu ...

  8. 使用 GitLab 的 OAuth2 认证服务

    原文地址 本文档讲述如何使用 GitLab 作为 OAuth 认证服务提供商,以通过 GitLab 的 OAuth 认证登录其他服务(例如持续集成工具 Drone). 如果想使用其他 OAuth 身份 ...

  9. urllib.parse解析链接

    1. urlparse() 解析链接,注意,返回值比3多一个params的属性 from urllib.parse import urlparse result = urlparse('http:// ...

  10. Java8 Nashorn JavaScript引擎

    使用Java8,Nashorn大大提高了JavaScript 引擎引入,以取代现有的Nashorn Java脚本引擎.Nashorn提供2至10倍更好的性能,因为它直接编译代码在存储器,并传递到字节码 ...