CH5102/SPOJ?? Mobile Service/P4046 [JSOI2010]快递服务[线性dp+卡常]
终于会做一道了。。
$f[i][j][k]$表示第$i$个命令后一个人在$j$,另一个在$k$,还有一个在哪你懂得。(其实这里是一个状态精简,第三个人的状态没必要留,因为可以知道)
于是每个操作枚举上一次两个人分布位置,排除一下站同一位置的,三个人里面选一个推过来。采用前推法(←我瞎起的名字2333)dp。状转的话看code里面三行好了。
EFFECTIVE SKILLS
很好写。但是比较卡常。一些细节优化:
- $f[2][N][N]$滚动。基本操作,优化空间。另外,在这题里面(或者说很多题中也)可以顺便优化时间。清INF的操作就可以不用了。原理是每次枚举i^1的两个人位置的时候由于这两个人位置状态枚举掉后不会再看了,而下一次再用i^1这一维的时候有要求有初始最大值方便更新,所以我现在推完立即就把i^1这一维设为INF。下次就不清INF了。时间就会极大减少。注意顺带清INF操作放在判断(line32)外面(其实是因为不想去想重叠的情况什么的了,统统初始化算了)
- 枚举j和k时,可以缩小范围,只枚举j<k的情况,枚举数量少一半。
然后轻松刷榜rank1。
现在看来上面的话过于睿智,请无视。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<queue>
#define dbg(x) cerr<<#x<<" = "<<x<<endl
#define ddbg(x,y) cerr<<#x<<" = "<<x<<" "<<#y<<" = "<<y<<endl
using namespace std;
typedef long long ll;
template<typename T>inline char MIN(T&A,T B){return A>B?A=B,:;}
template<typename T>inline char MAX(T&A,T B){return A<B?A=B,:;}
template<typename T>inline T _min(T A,T B){return A<B?A:B;}
template<typename T>inline T _max(T A,T B){return A>B?A:B;}
template<typename T>inline T read(T&x){
x=;int f=;char c;while(!isdigit(c=getchar()))if(c=='-')f=;
while(isdigit(c))x=x*+(c&),c=getchar();return f?x=-x:x;
}
const int N=+,M=+,INF=0x3f3f3f3f;
int dis[N][N],p[M],f[][N][N];
int m,n,ans; int main(){//freopen("test.in","r",stdin);//freopen("test.out","w",stdout);
read(n),read(m);
for(register int i=;i<=n;++i)for(register int j=;j<=n;++j)read(dis[i][j]);
for(register int i=;i<=m;++i)read(p[i]);
memset(f,INF,sizeof f);ans=INF;
f[][][]=dis[][p[]],f[][][]=dis[][p[]],f[][][]=dis[][p[]];
for(register int i=,l=;i<=m;++i,l^=){
for(register int j=;j<n;++j)
for(register int k=j+;k<=n;++k){
if((j^p[i-])&&(k^p[i-])){
MIN(f[l][j][k],f[l^][j][k]+dis[p[i-]][p[i]]);
p[i-]<k?MIN(f[l][p[i-]][k],f[l^][j][k]+dis[j][p[i]]):MIN(f[l][k][p[i-]],f[l^][j][k]+dis[j][p[i]]);
p[i-]<j?MIN(f[l][p[i-]][j],f[l^][j][k]+dis[k][p[i]]):MIN(f[l][j][p[i-]],f[l^][j][k]+dis[k][p[i]]);
}
f[l^][j][k]=INF;
}
}
for(register int i=;i<=n;++i)if(i^p[m])for(register int j=i+;j<=n;++j)if(j^p[m])MIN(ans,f[m&][i][j]);
printf("%d\n",ans);
return ;
}
CH5102/SPOJ?? Mobile Service/P4046 [JSOI2010]快递服务[线性dp+卡常]的更多相关文章
- P4046 [JSOI2010]快递服务
传送门 很容易想出\(O(n^3m)\)的方程,三维分别表示某个快递员现在在哪里,然后直接递推即可 然而这样会T,考虑怎么优化.我们发现每一天的时候都有一个快递员的位置是确定的,即在前一天要到的位置. ...
- 【BZOJ1820】[JSOI2010]快递服务(动态规划)
[BZOJ1820][JSOI2010]快递服务(动态规划) 题面 BZOJ 洛谷 题解 考虑无脑四维\(dp\).\(f[i][a][b][c]\),表示当前处理到第\(i\)个任务,三辆车的位置分 ...
- 【BZOJ1820】[JSOI2010]Express Service 快递服务 暴力DP
[BZOJ1820][JSOI2010]Express Service 快递服务 Description 「飞奔」快递公司成立之后,已经分别与市内许多中小企业公司签订邮件收送服务契约.由于有些公司是在 ...
- [JSOI2010]快递服务
Description Luogu4046 BZOJ1820 Solution 暴力DP很好想,\(f[i][j][k][l]\)表示处理到第\(i\)个任务,三个人在\(i,j,k\)的方案数.显然 ...
- BZOJ 1820: [JSOI2010]Express Service 快递服务( dp )
dp(i,j,k)表示在处理第i个业务, 另外2个在j,k处. 第一维可以滚动... --------------------------------------------------------- ...
- 1820: [JSOI2010]Express Service 快递服务
1820: [JSOI2010]Express Service 快递服务 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 847 Solved: 325 ...
- bzoj千题计划201:bzoj1820: [JSOI2010]Express Service 快递服务
http://www.lydsy.com/JudgeOnline/problem.php?id=1820 很容易想到dp[i][a][b][c] 到第i个收件地点,三个司机分别在a,b,c 收件地点的 ...
- CH5102 Mobile Service
CH5102 Mobile Service 描述 一个公司有三个移动服务员,最初分别在位置1,2,3处.如果某个位置(用一个整数表示)有一个请求,那么公司必须指派某名员工赶到那个地方去.某一时刻只有一 ...
- CH5102 Mobile Service【线性dp】
5102 Mobile Service 0x50「动态规划」例题 描述 一个公司有三个移动服务员,最初分别在位置1,2,3处.如果某个位置(用一个整数表示)有一个请求,那么公司必须指派某名员工赶到那个 ...
随机推荐
- MongoDB 走马观花(全面解读篇)(转载)
MongoDB 走马观花(全面解读篇)(转载) 目录 一.简介 二.基本模型 BSON 数据类型 分布式ID 三.操作语法 四.索引 索引特性 索引分类 索引评估.调优 五.集群 分片机制 副本集 ...
- /usr/lib/libstdc++.so.6: version `GLIBCXX_3.4.15' not found错误的解决 转载
升级cmake时,提示“Error when bootstrapping CMake:Problem while running initial CMake”,第二次运行./bootstrap时,直接 ...
- 【AMAD】django-rules -- 强大的Django鉴权库,不需要数据库
动机 简介 个人评分 动机 Django默认的权限原子级别是model级.但是一些时候我们像针对model每条数据库记录都进行权限空,也就是对象级权限控制. 简介 django-rules是一个Dja ...
- pypy3.6的下载地址和安装第三方依赖
1.不同版本的下载链接 建议使用此链接:https://bitbucket.org/pypy/pypy/downloads/ 官网的:http://doc.pypy.org/en/latest/rel ...
- 【Python开发】python发送各类邮件的方法
转载: python发送各类邮件的主要方法 python中email模块使得处理邮件变得比较简单,今天着重学习了一下发送邮件的具体做法,这里写写自己的的心得,也请高手给些指点. 一.相关模块介绍 发送 ...
- (已解决)Could not open '/var/lib/nova/mnt/*/volume-*': Permission denied
[问题描述] 创建boot_from_volume的虚机时,磁盘后端为NFS,创建失败. [错误日志] nova-compute模块 Could not open '/var/lib/nova/mnt ...
- [转帖]运行时库(runtime library)
运行时库(runtime library) https://blog.csdn.net/xitie8523/article/details/82712105 没学过这些东西 或者当时上课没听 又或者 ...
- [LGP2791] 幼儿园篮球题
你猜猜题怎么出出来的? 显然第\(i\)场的答案为 \[ \frac{1}{\binom{n_i}{m_i}\binom{n_i}{k_i}}\sum_{x=0}^{k_i}\binom{n_i}{m ...
- 第k小团(Bitset+bfs)牛客第二场 -- Kth Minimum Clique
题意: 给你n个点的权值和连边的信息,问你第k小团的值是多少. 思路: 用bitset存信息,暴力跑一下就行了,因为满足树形结构,所以bfs+优先队列就ok了,其中记录下最后进入的点(以免重复跑). ...
- DockerFile 编译语法详解
Dockerfile是一个文本格式的配置文件,用户可以使用Dockerfile来快速创建自定义的镜像,本小结首先介绍Dockerfile典型的基本结构和它支持的众多指令,并具体讲解通过这些指令来编写定 ...