伸展树splay之求区间极值
前言
这篇博客是根据我在打这道题的时候遇到的问题,来打的,有些细节可能考虑不到。
题目
在N(1<=N<=100000)个数A1…An组成的序列上进行M(1<=M<=100000)次操作,操作有两种:
(1)1 L R C:表示把A[L]到A[R]增加C(C的绝对值不超过10000);
(2)2 L R:询问A[L]到A[R]之间的最大值。
分析
由于本人刚刚学会splay,不够精通,splay的打法这里就先不说。
就讲讲求区间极值的方法吧。
对于每个位置开一个节点,记录这个节点的值、在以它为根的子树中的最大值。
当我们要对一个区间进行查询或修改时,
假设修改的区级为\([l,r]\)
我们将l-1转到根节点,r+1转到根节点的右儿子(为了保证有l-1和r+1节点,另外加入0和n+1节点)
那么根据二叉查找树的性质,
r+1的左子树就是要查询或修改的区间。
接着,还要处理lazy标记,
当我们再将x节点转到y节点的儿子时只需从y到x,将标记全部下传就可以了。
#include <cmath>
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <queue>
const int maxlongint=2147483647;
const int mo=1000000007;
const int N=100005;
using namespace std;
int l[N],r[N],lazy[N],mx[N],a[N],fa[N],root,q1,q2;
int tot,n,m,ans;
void clear()
{
fa[0]=lazy[0]=l[0]=r[0]=0;
mx[1]=mx[tot]=a[1]=a[tot]=mx[0]=a[0]=-maxlongint;
}
void doda(int x,int z)
{
mx[x]+=z;
a[x]+=z;
lazy[x]+=z;
}
void down(int x)
{
int z=lazy[x];
if(!z) return;
doda(l[x],z);
doda(r[x],z);
lazy[x]=0;
}
int getmax(int x)
{
mx[x]=max(mx[l[x]],mx[r[x]]);
mx[x]=max(mx[x],a[x]);
}
void zig(int x)
{
int y=fa[x];
fa[r[x]]=y;
if(l[fa[fa[x]]]==fa[x]) l[fa[y]]=x;
else r[fa[y]]=x;
l[y]=r[x];
r[x]=y;
fa[x]=fa[y];
fa[y]=x;
getmax(y);
getmax(x);
}
void zag(int x)
{
int y=fa[x];
fa[l[x]]=y;
if(l[fa[fa[x]]]==fa[x]) l[fa[y]]=x;
else r[fa[y]]=x;
r[y]=l[x];
l[x]=y;
fa[x]=fa[y];
fa[y]=x;
getmax(y);
getmax(x);
}
void splay(int p,int x)
{
if(x==p) return;
while(fa[x]!=p)
{
if(fa[fa[x]]==p)
{
if(l[fa[x]]==x) zig(x);
else zag(x);
break;
}
q1=(l[fa[fa[x]]]==fa[x]),q2=(l[fa[x]]==x);
if(q1)
{
if(q2) zig(fa[x]),zig(x);
else zag(x),zig(x);
}
else
{
if(q2) zig(x),zag(x);
else zag(fa[x]),zag(x);
}
}
}
void sola(int v,int x)
{
down(v);
if(x<v) sola(l[v],x);
if(v<x) sola(r[v],x);
getmax(v);
}
int get(int ll,int rr)
{
sola(root,ll-1);
clear();
splay(0,ll-1);
root=ll-1;
sola(root,rr+1);
clear();
splay(ll-1,rr+1);
return l[rr+1];
}
int main()
{
scanf("%d",&n);
r[1]=2;
fa[2]=1;
tot=2;
for(int i=1;i<=n;i++)
{
scanf("%d",&a[tot]);
mx[tot]=a[tot];
fa[tot+1]=tot;
r[tot]=++tot;
}
clear();
for(int i=tot;i>=1;i--) mx[i]=max(a[i],mx[r[i]]);
root=1;
scanf("%d",&m);
for(int i=1;i<=m;i++)
{
int x,ll,rr,c;
scanf("%d%d%d",&x,&ll,&rr);
ll++;
rr++;
clear();
if(x==1) scanf("%d",&c),doda(get(ll,rr),c);
else printf("%d\n",mx[get(ll,rr)]);
}
}
后记(2018.4.28)
明天就是GDOI2018了,回顾自己以前写的博客,看到我打splay居然zig、zag分开的之类的,回忆我多年来的OI历程,有些感慨。
总之,GDOI2018,加油。
伸展树splay之求区间极值的更多相关文章
- 伸展树(Splay tree)的基本操作与应用
伸展树的基本操作与应用 [伸展树的基本操作] 伸展树是二叉查找树的一种改进,与二叉查找树一样,伸展树也具有有序性.即伸展树中的每一个节点 x 都满足:该节点左子树中的每一个元素都小于 x,而其右子树中 ...
- K:伸展树(splay tree)
伸展树(Splay Tree),也叫分裂树,是一种二叉排序树,它能在O(lgN)内完成插入.查找和删除操作.在伸展树上的一般操作都基于伸展操作:假设想要对一个二叉查找树执行一系列的查找操作,为了使 ...
- 树-伸展树(Splay Tree)
伸展树概念 伸展树(Splay Tree)是一种二叉排序树,它能在O(log n)内完成插入.查找和删除操作.它由Daniel Sleator和Robert Tarjan创造. (01) 伸展树属于二 ...
- 纸上谈兵: 伸展树 (splay tree)[转]
作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明.谢谢! 我们讨论过,树的搜索效率与树的深度有关.二叉搜索树的深度可能为n,这种情况下,每 ...
- 高级搜索树-伸展树(Splay Tree)
目录 局部性 双层伸展 查找操作 插入操作 删除操作 性能分析 完整源码 与AVL树一样,伸展树(Splay Tree)也是平衡二叉搜索树的一致,伸展树无需时刻都严格保持整棵树的平衡,也不需要对基本的 ...
- 【BBST 之伸展树 (Splay Tree)】
最近“hiho一下”出了平衡树专题,这周的Splay一直出现RE,应该删除操作指针没处理好,还没找出原因. 不过其他操作运行正常,尝试用它写了一道之前用set做的平衡树的题http://codefor ...
- [Splay伸展树]splay树入门级教程
首先声明,本教程的对象是完全没有接触过splay的OIer,大牛请右上角.. 首先引入一下splay的概念,他的中文名是伸展树,意思差不多就是可以随意翻转的二叉树 PS:百度百科中伸展树读作:BoGa ...
- 伸展树Splay【非指针版】
·伸展树有以下基本操作(基于一道强大模板题:codevs维护队列): a[]读入的数组;id[]表示当前数组中的元素在树中节点的临时标号;fa[]当前节点的父节点的编号;c[][]类似于Trie,就是 ...
- POJ 3580 - SuperMemo - [伸展树splay]
题目链接:http://poj.org/problem?id=3580 Your friend, Jackson is invited to a TV show called SuperMemo in ...
随机推荐
- CSS进阶学习
5种主流浏览器及内核 IE trident Chrome webkit/blink Firefox gecko Opera presto 3%-5% Safari webkit css引入三种方式 ...
- 【HTTP】一、HTTP协议简介及其工作流程
协议是指计算机通信网络中两台计算机之间进行通信所必须共同遵守的规定或规则,超文本传输协议(HTTP)是一种通信协议,它允许将超文本标记语言(HTML)文档从Web服务器传送到客户端的浏览器. (一 ...
- java期末考试
水仙花数 package txt; public class shuixianhua { public static void main(String[] args) { // TODO Auto-g ...
- Spring Cloud 使用Feign调用服务传递Header中的参数
1.使用Feign 调用其他微服务,尤其是在多级调用的同时,需要将一些共同的参数传递至下一个服务,如:token.比较方便的做法是放在请求头中,在Feign调用的同时自动将参数放到restTempla ...
- jira:恢复数据:AO_187CCC_SIDEBAR_LINK
JIRA 恢复数据时报错 ,关键词是找不到 AO_187CCC_SIDEBAR_LINK. 经网上查为 mysql connect jar 包 的版本过高所致. 降低版本后,成功导入数据.
- 重装java后hadoop配置文件的修改
1.删除hdfs-site.xml中dfs.namenode.name.dir目录和dfs.datanode.data.dir目录 然后 hdfs namenode -format 不然将无法启动na ...
- hibernate update-->参数绑定
Hibernate 更新数据库 参数绑定总结: 一.query.setParameter(属性名,真实值,类型); String hql="update User u set u.userN ...
- zookeeper 实战操作
一:监听服务端zookeeper节点数据改变 import java.io.IOException; import java.util.concurrent.CountDownLatch; impor ...
- 删除项目中所有的__pycache__ 文件
关于 pycache 当第一次运行 python 脚本时,解释器会将 *.py 脚本进行编译并保存到 __pycache__ 目录 下次执行脚本时,若解释器发现你的 *.py 脚本没有变更,便会跳过编 ...
- Vim插件YouCompleteMe安装记录(号称最难装的Vim插件?)
使用 PulginInstall 安装就不要想了,如果你没有梯子的话 自己的 ssr 被封,使用的同事的 ss,但是同事设置的加密方式在 linux 上的 ss 应用不支持... 好吧,直接上过程 1 ...