luogu P1398 [NOI2013]书法家
注意到\(N\ O\ I\)三个字母都可以从左到右拆成三部分,即\(N=\)一个矩形+一堆矩形+一个矩形,\(O=\)一条+两条横的+一条,\(I=\)两条横的+一个矩形+两条横的,所以可以拆成\(13\)个部分转移(\(9\)个字母部分,\(4\)个空白部分)
设\(f_{i,j,l,r}\)表示第\(i\)列,放的是字母的\(j\)部分,放了从\(l\)行到\(r\)行的最大值,\(g_{i,j}\)表示第\(i\)列,放的是的空白\(j\)部分的最大值.转移根据不同的部分,枚举下一列怎么放,但是这样复杂度不对.可以发现只有空白部分转移到字母部分和\(N\)部分转移需要枚举放哪里,其他的可以直接继承上一个状态的\(l,r\)
空白部分转移比较简单,这里主要看\(N\).首先从第一部分转移到第二部分,如果放了\(l,r\),那么前一个状态的后面两维为\(l,r'(r'>r)\),所以可以记后缀最大值直接转移.然后是第二部分之间的转移,上一个状态后两维是\(l',r'(l'\ge l,l-1\le r'\le r)\),这个也可以前缀最值优化.从第二部分转移到第三部分,前一个状态的后面两维为\(l',r(l'<l)\),可以前缀最值优化
具体细节详见代码
#include<bits/stdc++.h>
#define LL long long
#define uLL unsigned long long
#define il inline
using namespace std;
const int N=150+10,M=500+10;
il int rd()
{
int x=0,w=1;char ch=0;
while(ch<'0'||ch>'9') {if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') {x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
int n,m,a[N][M],s[N][M],f[2][10][N][N],g[2][4],ss[N];
int main()
{
n=rd(),m=rd();
for(int i=1;i<=n;++i)
for(int j=1;j<=m;++j)
a[i][j]=rd(),s[i][j]=s[i-1][j]+a[i][j];
memset(f,-0x3f,sizeof(f)),memset(g,-0x3f,sizeof(g));
int nw=1,la=0;
g[la][0]=0;
for(int j=1;j<=m+1;++j)
{
memcpy(g[nw],g[la],sizeof(g[la]));
//
for(int l=1;l<=n;++l)
for(int r=l+1;r<=n;++r)
f[nw][1][l][r]=max(g[la][0],f[la][1][l][r])+s[r][j]-s[l-1][j];
for(int l=1;l<=n;++l)
for(int r=n,mx=-(1<<29);r>=l;--r)
{
f[nw][2][l][r]=max(f[nw][2][l][r],mx+s[r][j]-s[l-1][j]);
mx=max(mx,f[la][1][l][r]);
}
memset(ss,-0x3f,sizeof(ss));
for(int l=1;l<=n;++l)
for(int r=l,mx=ss[l-1];r<=n;++r)
{
ss[r]=max(ss[r],f[la][2][l][r]);
mx=max(mx,ss[r]);
f[nw][2][l][r]=max(f[nw][2][l][r],mx+s[r][j]-s[l-1][j]);
}
for(int r=n;r;--r)
for(int l=r,mx=-(1<<29);l;--l)
{
f[nw][3][l][r]=max(f[nw][3][l][r],mx+s[r][j]-s[l-1][j]);
mx=max(mx,f[la][2][l][r]);
}
for(int l=1;l<=n;++l)
for(int r=l+1;r<=n;++r)
{
f[nw][3][l][r]=max(f[nw][3][l][r],f[la][3][l][r]+s[r][j]-s[l-1][j]);
g[nw][1]=max(g[nw][1],f[la][3][l][r]);
}
//
for(int l=1;l<=n;++l)
for(int r=l+2;r<=n;++r)
f[nw][4][l][r]=g[la][1]+s[r][j]-s[l-1][j];
for(int l=1;l<=n;++l)
for(int r=l+2;r<=n;++r)
f[nw][5][l][r]=max(f[la][4][l][r],f[la][5][l][r])+a[l][j]+a[r][j];
for(int l=1;l<=n;++l)
for(int r=l+2;r<=n;++r)
{
f[nw][6][l][r]=f[la][5][l][r]+s[r][j]-s[l-1][j];
g[nw][2]=max(g[nw][2],f[la][6][l][r]);
}
//
for(int l=1;l<=n;++l)
for(int r=l+2;r<=n;++r)
f[nw][7][l][r]=max(g[la][2],f[la][7][l][r])+a[l][j]+a[r][j];
for(int l=1;l<=n;++l)
for(int r=l+2;r<=n;++r)
f[nw][8][l][r]=max(f[la][7][l][r],f[la][8][l][r])+s[r][j]-s[l-1][j];
for(int l=1;l<=n;++l)
for(int r=l+2;r<=n;++r)
{
f[nw][9][l][r]=max(f[la][8][l][r],f[la][9][l][r])+a[l][j]+a[r][j];
g[nw][3]=max(g[nw][3],f[la][9][l][r]);
}
//
memset(f[la],-0x3f,sizeof(f[la])),memset(g[la],-0x3f,sizeof(g[la]));
nw^=1,la^=1;
}
printf("%d\n",g[la][3]);
return 0;
}
luogu P1398 [NOI2013]书法家的更多相关文章
- P1398 [NOI2013]书法家
传送门 就是个普及组 $dp$ 合集,把 $NOI$ 从左到右拆成 $9$ 个部分,每个部分都可以分别 $dp$ 除了 $N$ 的中间部分比较恶心以外其他都还好,自己推一下然后就知道转移,就 $N$ ...
- [Noi2013]书法家
来自FallDream的博客,未经允许,请勿转载,谢谢. 小E同学非常喜欢书法,他听说NOI2013已经开始了,想题一幅“NOI”的字送给大家. 小E有一张非常神奇的纸,纸可以用一个n 行m 列的二维 ...
- BZOJ3241/UOJ125 [Noi2013]书法家
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...
- BZOJ 3241: [Noi2013]书法家
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3241 题意: 思路:把每个字母分成三部分,两个字母之间还有空的列,所以我一共设了11个状态 ...
- 【uoj125】 NOI2013—书法家
http://uoj.ac/problem/125 (题目链接) 题意 在网格上写“NOI”,每个格子上有一些权值,要求覆盖的权值最大.书写有一些规则. Solution 将“NOI”分成11个部分, ...
- luogu P1399 [NOI2013]快餐店
传送门 注意到答案为这个基环树直径\(/2\) 因为是基环树,所以考虑把环拎出来.如果直径不过环上的边,那么可以在环上每个点下挂的子树内\(dfs\)求得.然后如果过环上的边,那么环上的部分也是一条链 ...
- luogu P1397 [NOI2013]矩阵游戏
传送门 题目中那两个递推式显然可以写成矩乘的形式,然后十进制快速幂即可.这里不再赘述 只有两个递推式,我们可以考虑一波推式子,首先第一行的元素应该分别是\(1,a+b,a^2+ab+b,a^3+a^2 ...
- luogu P1232 [NOI2013]树的计数
传送门 这题妙蛙 首先考虑构造出一个合法的树.先重新编号,把bfs序整成\(1,2,3...n\),然后bfs序就是按照从上到下从左往右的遍历顺序,所以可以考虑对bfs序分层,可以知道分层方式只会对应 ...
- luogu P1224 [NOI2013]向量内积
传送门 挺有意思的一道题 暴力60就是枚举每个向量暴力check,随机选向量就能多骗一些分 然后两个向量内积要模\(k\)为\(0\),那么如果全部不为\(0\)就不合法.先考虑\(k=2\),对于向 ...
随机推荐
- sublime的python开发环境搭建
至少很长一段时间内,我个人用的一直是pycharm,也感觉挺好用的,也没啥大毛病 但是pycharm确实有点笨重,啥功能都有,但是有很多可能这辈子我也不会用到,并且pycharm打开的速度确实不敢恭维 ...
- VTK 编译过程中出现的hdf5长度(I64)错误解决办法
最近在使用vtk和cuda做大规模图像处理方面的问题研究,在编译vtk的过程中发现第三方库hdf5不能够解决I64长度的探测识别问题.为了节约大家的时间,现在把我经过实践得到的解决方案共享出来,这里要 ...
- Mysql 获取成绩排序后的名次
其实就是输出mysql的排序后的行号 RT:获取单个用户的成绩在所有用户成绩中的排名 可以分两步: 1.查出所有用户和他们的成绩排名 ) as rowNo from t_user, () ) ...
- ELK日志平台搭建
功能: 1. 查看当天的服务器日志信息(要求:在出现警告甚至警告级别以上的都要查询)2. 能够查看服务器的所有用户的操作日志3. 能够查询nginx服务器采集的日志(kibana作图)4. 查看tom ...
- [BZOJ3990]:[SDOI2015]排序(搜索)
题目传送门 题目描述 小A有一个1-${2}^{N}$的排列A[1..${2}^{N}$],他希望将A数组从小到大排序,小A可以执行的操作有N种,每种操作最多可以执行一次,对于所有的i(1≤i≤N), ...
- ArrayList类源码浅析(一)
1.首先来看一下ArrayList类中的字段 可以看出,ArrayList维护了一个Object数组,默认容量是10,size记录数组的长度: 2.ArrayList提供了三个构造器:ArrayLis ...
- MongoDB通过JavaDriver执行shell命令,例如创建sharding collection
Mongodb的java driver本身的接口 void createCollection(String collectionName, CreateCollectionOptions create ...
- 每日踩坑 2019-08-23 button 元素点击后刷新页面
button标签按钮会提交表单. 解决方案: <button class="btn btn-primary" type="button" id=" ...
- iOS AES-CBC、AES-ECB 加解密
简介 AES是加密的算法,使用128.192 和 256 位密钥,将被加密数据划分为128位(16字节)一块,然后使用某种加密模式进行加密 关键词: 块大小:16字节 密钥长度:AES算法下,key的 ...
- event.currentTarget
https://api.jquery.com/event.currentTarget/ event.currentTargetReturns: Element Description: The cur ...